Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 40(3): 273-289, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356986

RESUMO

Insulin-like growth factor I (IGF-1) has been implicated in breast cancer due to its mitogenic and anti-apoptotic effects. Despite substantial research on the role of IGF-1 in tumor progression, the relationship of IGF-1 to tissue stem cells, particularly in mammary tissue, and the resulting tumor susceptibility has not been elucidated. Previous studies with the BK5.IGF-1 transgenic (Tg) mouse model reveals that IGF-1 does not act as a classical, post-carcinogen tumor promoter in the mammary gland. Pre-pubertal Tg mammary glands display increased numbers and enlarged sizes of terminal end buds, a niche for mammary stem cells (MaSCs). Here we show that MaSCs from both wild-type (WT) and Tg mice expressed IGF-1R and that overexpression of Tg IGF-1 increased numbers of MaSCs by undergoing symmetric division, resulting in an expansion of the MaSC and luminal progenitor (LP) compartments in pre-pubertal female mice. This expansion was maintained post-pubertally and validated by mammosphere assays in vitro and transplantation assays in vivo. The addition of recombinant IGF-1 promoted, and IGF-1R downstream inhibitors decreased mammosphere formation. Single-cell transcriptomic profiles generated from 2 related platforms reveal that IGF-1 stimulated quiescent MaSCs to enter the cell cycle and increased their expression of genes involved in proliferation, plasticity, tumorigenesis, invasion, and metastasis. This study identifies a novel, pro-tumorigenic mechanism, where IGF-1 increases the number of transformation-susceptible carcinogen targets during the early stages of mammary tissue development, and "primes" their gene expression profiles for transformation.


Assuntos
Fator de Crescimento Insulin-Like I , Glândulas Mamárias Animais , Animais , Proliferação de Células , Feminino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(10): 5430-5441, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094172

RESUMO

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. Dysregulation of STAT3, a transcription factor pivotal to various cellular processes including Th17 cell differentiation, has been implicated in MS. Here, we report that STAT3 is activated in infiltrating monocytic cells near active MS lesions and that activation of STAT3 in myeloid cells is essential for leukocyte infiltration, neuroinflammation, and demyelination in experimental autoimmune encephalomyelitis (EAE). Genetic disruption of Stat3 in peripheral myeloid lineage cells abrogated EAE, which was associated with decreased antigen-specific T helper cell responses. Myeloid cells from immunized Stat3 mutant mice exhibited impaired antigen-presenting functions and were ineffective in driving encephalitogenic T cell differentiation. Single-cell transcriptome analyses of myeloid lineage cells from preclinical wild-type and mutant mice revealed that loss of myeloid STAT3 signaling disrupted antigen-dependent cross-activation of myeloid cells and T helper cells. This study identifies a previously unrecognized requisite for myeloid cell STAT3 in the activation of myelin-reactive T cells and suggests myeloid STAT3 as a potential therapeutic target for autoimmune demyelinating disease.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Ativação Linfocitária , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Células Mieloides/imunologia , Fator de Transcrição STAT3/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Antígeno CD11b/análise , Diferenciação Celular , Encefalomielite Autoimune Experimental/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Esclerose Múltipla/genética , Fator de Transcrição STAT3/genética , Análise de Célula Única , Transcriptoma
3.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768809

RESUMO

Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.


Assuntos
Infecções por Cardiovirus/genética , Regulação da Expressão Gênica , Hipocampo/metabolismo , Medula Espinal/metabolismo , Theilovirus , Animais , Doenças Desmielinizantes , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Camundongos , Análise de Sequência de RNA
4.
Mamm Genome ; 31(9-12): 263-286, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33015751

RESUMO

Genetic background is known to play a role in the ability to derive pluripotent, embryonic stem cells (ESC), a trait referred to as permissiveness. Previously we demonstrated that induced pluripotent stem cells (iPSC) can be readily derived from non-permissive mouse strains by addition of serum-based media supplemented with GSK3B and MEK inhibitors, termed 2iS media, 3 days into reprogramming. Here, we describe the derivation of second type of iPSC colony from non-permissive mouse strains that can be stably maintained independently of 2iS media. The resulting cells display transcriptional heterogeneity similar to that observed in ESC from permissive genetic backgrounds derived in conventional serum containing media supplemented with leukemia inhibitor factor. However, unlike previous studies that report exclusive subpopulations, we observe both exclusive and simultaneous expression of naive and primed cell surface markers. Herein, we explore shifts in pluripotency in the presence of 2iS and characterize heterogenous subpopulations to determine their pluripotent state and role in heterogenous iPSCs derived from the non-permissive NOD/ShiLtJ strain. We conclude that heterogeneity is a naturally occurring, necessary quality of stem cells that allows for the maintenance of pluripotency. This study further demonstrates the efficacy of the 2iS reprogramming technique. It is also the first study to derive stable ESC-like stem cells from the non-permissive NOD/ShiLtJ and WSB/EiJ strains, enabling easier and broader research possibilities into pluripotency for these and similar non-permissive mouse strains and species.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Heterogeneidade Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Animais , Biomarcadores , Diferenciação Celular , Células Cultivadas , Reprogramação Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imunofenotipagem , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Especificidade da Espécie
5.
Plant Biotechnol J ; 17(6): 1142-1153, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30467959

RESUMO

In seeds and other parts of cultivated, tetraploid cotton (Gossypium hirsutum L.), multicellular groups of cells lysigenously form dark glands containing toxic terpenoids such as gossypol that defend the plant against pests and pathogens. Using RNA-seq analysis of embryos from near-isogenic glanded (Gl2 Gl2 Gl3 Gl3 ) versus glandless (gl2 gl2 gl3 gl3 ) plants, we identified 33 genes that expressed exclusively or at higher levels in embryos just prior to gland formation in glanded plants. Virus-induced gene silencing against three gene pairs led to significant reductions in the number of glands in the leaves, and significantly lower levels of gossypol and related terpenoids. These genes encode transcription factors and have been designated the 'Cotton Gland Formation' (CGF) genes. No sequence differences were found between glanded and glandless cotton for CGF1 and CGF2 gene pairs. The glandless cotton has a transposon insertion within the coding sequence of the GoPGF (synonym CGF3) gene of the A subgenome and extensive mutations in the promoter of D subgenome homeolog. Overexpression of GoPGF (synonym CGF3) led to a dramatic increase in gossypol and related terpenoids in cultured cells, whereas CRISPR/Cas9 knockout of GoPGF (synonym CGF3) genes resulted in glandless phenotype. Taken collectively, the results show that the GoPGF (synonym CGF3) gene plays a critical role in the formation of glands in the cotton plant. Seed-specific silencing of CGF genes, either individually or in combination, could eliminate glands, thus gossypol, from the cottonseed to render it safe as food or feed for monogastrics.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Sementes , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Gossipol/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Sementes/citologia , Sementes/genética , Sementes/metabolismo
6.
Chem Res Toxicol ; 32(5): 887-898, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30990016

RESUMO

Metabolism of 1,3-butadiene, a known human and rodent carcinogen, results in formation of reactive epoxides, a key event in its carcinogenicity. Although mice exposed to 1,3-butadiene present DNA adducts in all tested tissues, carcinogenicity is limited to liver, lung, and lymphoid tissues. Previous studies demonstrated that strain- and tissue-specific epigenetic effects in response to 1,3-butadiene exposure may influence susceptibly to DNA damage and serve as a potential mechanism of tissue-specific carcinogenicity. This study aimed to investigate interindividual variability in the effects of 1,3-butadiene using a population-based mouse model. Male mice from 20 Collaborative Cross strains were exposed to 0 or 635 ppm 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. We evaluated DNA damage and epigenetic effects in target (lung and liver) and nontarget (kidney) tissues of 1,3-butadiene-induced carcinogenesis. DNA damage was assessed by measuring N-7-(2,3,4-trihydroxybut-1-yl)-guanine (THB-Gua) adducts. To investigate global histone modification alterations, we evaluated the trimethylation and acetylation of histones H3 and H4 across tissues. Changes in global cytosine DNA methylation were evaluated from the levels of methylation of LINE-1 and SINE B1 retrotransposons. We quantified the degree of variation across strains, deriving a chemical-specific human variability factor to address population variability in carcinogenic risk, which is largely ignored in current cancer risk assessment practice. Quantitative trait locus mapping identified four candidate genes related to chromatin remodeling whose variation was associated with interstrain susceptibility. Overall, this study uses 1,3-butadiene to demonstrate how the Collaborative Cross mouse population can be used to identify the mechanisms for and quantify the degree of interindividual variability in tissue-specific effects that are relevant to chemically induced carcinogenesis.


Assuntos
Butadienos/toxicidade , Adutos de DNA/metabolismo , Epigênese Genética/efeitos dos fármacos , Animais , Carcinógenos Ambientais/toxicidade , Adutos de DNA/química , Adutos de DNA/genética , Metilação de DNA/efeitos dos fármacos , Guanina/análogos & derivados , Guanina/química , Histonas/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Mutagênicos/toxicidade
7.
J Assist Reprod Genet ; 36(3): 543-556, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30470961

RESUMO

PURPOSE: This study aims to determine if intra-ovarian injection of bone marrow-derived mesenchymal stem cells (MSCs) improves or restores ovarian function in aged females. METHODS: Prospective randomized study of eight aged mares and six young mares receiving intra-ovarian injection of MSCs or vehicle. Main outcome measures were antral follicle count and serum anti-Müllerian hormone (AMH) (aged and young mares), and for aged mares, oocyte meiotic and developmental competence; gross and histological ovarian assessment; evaluation of presence of chimerism in recovered granulosa cells and in ovarian tissue samples; and gene expression in ovarian tissue as assessed by RNA sequencing. RESULTS: Injection of MSCs was not associated with significant changes in follicle number, oocyte recovery rate on follicle aspiration, oocyte maturation rate, or blastocyst rate after ICSI in aged mares, or in changes in follicle number in young mares. There were no significant changes in peripheral AMH concentrations, indicating a lack of effect on growing follicles. MSC donor DNA was not recovered in granulosa cells or in ovarian tissue, indicating lack of persistence of injected MSC. RNA sequencing revealed significant differences in gene expression between MSC- and vehicle-injected ovaries. CONCLUSIONS: Intra-ovarian injection of bone marrow-derived MSCs altered gene expression but did not improve ovarian function in aged mares.


Assuntos
Células da Granulosa/transplante , Transplante de Células-Tronco Mesenquimais , Folículo Ovariano/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Animais , Estradiol/metabolismo , Feminino , Cavalos , Células-Tronco Mesenquimais/citologia , Recuperação de Oócitos , Oócitos/crescimento & desenvolvimento , Estudos Prospectivos , Análise de Sequência de RNA
8.
Mamm Genome ; 29(1-2): 168-181, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29353386

RESUMO

Studies of gene expression are common in toxicology and provide important clues to mechanistic understanding of adverse effects of chemicals. Most prior studies have been performed in a single strain or cell line; however, gene expression is heavily influenced by the genetic background, and these genotype-expression differences may be key drivers of inter-individual variation in response to chemical toxicity. In this study, we hypothesized that the genetically diverse Collaborative Cross mouse population can be used to gain insight and suggest mechanistic hypotheses for the dose- and genetic background-dependent effects of chemical exposure. This hypothesis was tested using a model liver toxicant trichloroethylene (TCE). Liver transcriptional responses to TCE exposure were evaluated 24 h after dosing. Transcriptomic dose-responses were examined for both TCE and its major oxidative metabolite trichloroacetic acid (TCA). As expected, peroxisome- and fatty acid metabolism-related pathways were among the most dose-responsive enriched pathways in all strains. However, nearly half of the TCE-induced liver transcriptional perturbation was strain-dependent, with abundant evidence of strain/dose interaction, including in the peroxisomal signaling-associated pathways. These effects were highly concordant between the administered TCE dose and liver levels of TCA. Dose-response analysis of gene expression at the pathway level yielded points of departure similar to those derived from the traditional toxicology studies for both non-cancer and cancer effects. Mapping of expression-genotype-dose relationships revealed some significant associations; however, the effects of TCE on gene expression in liver appear to be highly polygenic traits that are challenging to positionally map. This study highlights the usefulness of mouse population-based studies in assessing inter-individual variation in toxicological responses, but cautions that genetic mapping may be challenging because of the complexity in gene exposure-dose relationships.


Assuntos
Genética Populacional , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética , Tricloroetileno/toxicidade , Animais , Relação Dose-Resposta a Droga , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Ácido Tricloroacético/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1392-1402, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28315775

RESUMO

During colon cancer, epigenetic alterations contribute to the dysregulation of major cellular functions and signaling pathways. Modifications in chromatin signatures such as H3K4me3 and H3K9ac, which are associated with transcriptionally active genes, can lead to genomic instability and perturb the expression of gene sets associated with oncogenic processes. In order to further elucidate early pre-tumorigenic epigenetic molecular events driving CRC, we integrated diverse, genome-wide, epigenetic inputs (by high throughput sequencing of RNA, H3K4me3, and H3K9ac) and compared differentially expressed transcripts (DE) and enriched regions (DER) in an in-vivo rat colon cancer progression model. Carcinogen (AOM) effects were detected genome-wide at the RNA (116 DE genes), K9ac (49 DERs including 24 genes) and K4me3 (7678 DERs including 3792 genes) level. RNA-seq differential expression and pathway analysis indicated that interferon-associated innate immune responses were impacted by AOM exposure. Despite extensive associations between K4me3 DERs and colon tumorigenesis (1210 genes were linked to colorectal carcinoma) including FOXO3, GNAI2, H2AFX, MSH2, NR3C1, PDCD4 and VEGFA, these changes were not reflected at the RNA gene expression level during early cancer progression. Collectively, our results indicate that carcinogen-induced changes in gene K4me3 DERs are harbingers of future transcriptional events, which drive malignant transformation of the colon.


Assuntos
Neoplasias do Colo/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Transcrição Gênica , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Histonas/genética , Masculino , Proteínas de Neoplasias/genética , Ratos , Ratos Sprague-Dawley
10.
J Pharmacol Exp Ther ; 361(1): 17-28, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28148637

RESUMO

Lifestyle factors and chronic pathologic states are important contributors to interindividual variability in susceptibility to xenobiotic-induced toxicity. Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent condition that can dramatically affect chemical metabolism. We examined the effect of NAFLD on toxicokinetics of tetrachloroethylene (PERC), a ubiquitous environmental contaminant that requires metabolic activation to induce adverse health effects. Mice (C57Bl/6J, male) were fed a low-fat diet (LFD), high-fat diet (HFD), or methionine/folate/choline-deficient diet (MCD) to model a healthy liver, steatosis, or nonalcoholic steatohepatitis (NASH), respectively. After 8 weeks, mice were orally administered a single dose of PERC (300 mg/kg) or vehicle (aqueous Alkamuls-EL620) and euthanized at various time points (1-36 hours). Levels of PERC and its metabolites were measured in blood/serum, liver, and fat. Effects of diets on liver gene expression and tissue:air partition coefficients were evaluated. We found that hepatic levels of PERC were 6- and 7.6-fold higher in HFD- and MCD-fed mice compared with LFD-fed mice; this was associated with an increased PERC liver:blood partition coefficient. Liver and serum Cmax for trichloroacetate (TCA) was lower in MCD-fed mice; however, hepatic clearance of TCA was profoundly reduced by HFD or MCD feeding, leading to TCA accumulation. Hepatic mRNA/protein expression and ex vivo activity assays revealed decreased xenobiotic metabolism in HFD- and MCD-, compared with LFD-fed, groups. In conclusion, experimental NAFLD was associated with modulation of xenobiotic disposition and metabolism and increased hepatic exposure to PERC and TCA. Underlying NAFLD may be an important susceptibility factor for PERC-associated hepatotoxicity.


Assuntos
Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tetracloroetileno/farmacocinética , Tetracloroetileno/toxicidade , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Toxicocinética
11.
Sex Transm Dis ; 44(1): 35-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27898568

RESUMO

BACKGROUND: Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. METHODS: We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. RESULTS: Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. CONCLUSIONS: Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.


Assuntos
Infecções por Chlamydia/genética , Sequenciamento do Exoma , Infertilidade/genética , Doença Inflamatória Pélvica/genética , Transdução de Sinais/genética , Adulto , Proteínas Morfogenéticas Ósseas/análise , Infecções por Chlamydia/complicações , Feminino , Humanos , Infertilidade/microbiologia , Interleucina-1/análise , Doença Inflamatória Pélvica/complicações , Doença Inflamatória Pélvica/microbiologia , Análise de Componente Principal , Receptores Purinérgicos P2Y/análise
12.
Am J Bot ; 104(3): 439-450, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28325831

RESUMO

PREMISE OF THE STUDY: Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock (Tsuga mertensiana) on the Alaskan Kenai Peninsula. METHODS: We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. KEY RESULTS: A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. CONCLUSIONS: Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution.


Assuntos
Fluxo Gênico , Variação Genética , Genômica , Cicutas (Apiáceas)/genética , Alaska , Clima , Mudança Climática , Ecossistema , Genética Populacional , Genótipo , Cicutas (Apiáceas)/fisiologia , Desequilíbrio de Ligação , Análise de Sequência de DNA , Árvores
13.
BMC Genomics ; 17(1): 993, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27919223

RESUMO

BACKGROUND: Rhodococcus equi (R. equi) is an intracellular bacterium that affects young foals and immuno-compromised individuals causing severe pneumonia. Currently, the genetic mechanisms that confer susceptibility and/or resistance to R. equi are not fully understood. Previously, using a SNP-based genome-wide association study, we identified a region on equine chromosome 26 associated with culture-confirmed clinical pneumonia. To better characterize this region and understand the function of the SNP located within TRPM2 that was associated with R. equi pneumonia, we performed RNA-Seq on 12 horses representing the 3 genotypic forms of this SNP. RESULTS: We identified differentially expressed genes in the innate immune response pathway when comparing homozygous A allele horses with the AB and BB horses. Isoform analyses of the RNA-Seq data predicted the existence of multiple transcripts and provided evidence of differential expression at the TRPM2 locus. This finding is consistent with previously demonstrated work in human cell lines in which isoform-specific expression of TRPM2 was critical for cell viability. CONCLUSIONS: This work demonstrates that SNPs in TRPM2 are associated with differences in gene expression, suggesting that modulation of expression of this innate immune gene contributes to susceptibility to R. equi pneumonia.


Assuntos
Infecções por Actinomycetales/veterinária , Predisposição Genética para Doença , Genótipo , Doenças dos Cavalos/etiologia , Polimorfismo de Nucleotídeo Único , Rhodococcus equi , Canais de Cátion TRPM/genética , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Fenótipo , Transcriptoma
14.
Physiol Genomics ; 45(24): 1229-43, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24151245

RESUMO

Since disease susceptibility of the intestine exhibits an anatomical bias, we propose that the chromatin landscape, especially the site-specific epigenetic differences in histone modification patterns throughout the colonic longitudinal axis, contributes to the differential incidence of site-specific pathology. To test this hypothesis, we assessed the chromatin structure associated with gene expression profiles in the rat proximal and distal colon by globally correlating chromatin immunoprecipitation next-generation sequencing analysis (ChIP-Seq) with mRNA transcription (RNA-Seq) data. Crypts were isolated from the proximal and distal colonic regions from rats maintained on a semipurified diet, and mRNA gene expression profiles were generated by RNA-Seq. The remaining isolated crypts were formaldehyde-cross-linked and chromatin immunoprecipitated with antibodies against H3K4me3, H3K9me3, and RNA polymerase II. Globally, RNA-Seq results indicate that 9,866 genes were actively expressed, of which 540 genes were differentially expressed between the proximal and distal colon. Gene ontology analysis indicates that crypt location significantly affected both chromatin and transcriptional regulation of genes involved in enterocyte movement, lipid metabolism, lymphatic development, and immune cell trafficking. Gene function analysis indicates that the PI3-kinase signaling pathway was regulated in a site-specific manner, e.g., proto-oncogenes, JUN, FOS, and ATF, were upregulated in the distal colon. Middle and long noncoding RNAs (lncRNAs) were also detected in the colon, including select lncRNAs formerly only detected in the rat nervous system. In summary, distinct combinatorial patterns of histone modifications exist in the proximal versus distal colon. These site-specific differences may explain the differential effects of chemoprotective agents on cell transformation in the ascending (proximal) and descending (distal) colon.


Assuntos
Colo/metabolismo , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Sequência de Bases , Primers do DNA , Masculino , Ratos , Ratos Sprague-Dawley
15.
Front Cell Neurosci ; 17: 1169786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180951

RESUMO

Multiple sclerosis (MS) is the most prevalent demyelinating disease of the central nervous system, characterized by myelin destruction, axonal degeneration, and progressive loss of neurological functions. Remyelination is considered an axonal protection strategy and may enable functional recovery, but the mechanisms of myelin repair, especially after chronic demyelination, remain poorly understood. Here, we used the cuprizone demyelination mouse model to investigate spatiotemporal characteristics of acute and chronic de- and remyelination and motor functional recovery following chronic demyelination. Extensive remyelination occurred after both the acute and chronic insults, but with less robust glial responses and slower myelin recovery in the chronic phase. Axonal damage was found at the ultrastructural level in the chronically demyelinated corpus callosum and in remyelinated axons in the somatosensory cortex. Unexpectedly, we observed the development of functional motor deficits after chronic remyelination. RNA sequencing of isolated brain regions revealed significantly altered transcripts across the corpus callosum, cortex and hippocampus. Pathway analysis identified selective upregulation of extracellular matrix/collagen pathways and synaptic signaling in the chronically de/remyelinating white matter. Our study demonstrates regional differences of intrinsic reparative mechanisms after a chronic demyelinating insult and suggests a potential link between long-term motor function alterations and continued axonal damage during chronic remyelination. Moreover, the transcriptome dataset of three brain regions and over an extended de/remyelination period provides a valuable platform for a better understanding of the mechanisms of myelin repair as well as the identification of potential targets for effective remyelination and neuroprotection for progressive MS.

16.
Front Microbiol ; 14: 1200983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601366

RESUMO

Most current Salmonella subtyping analyses rely on whole genome sequencing (WGS), which focuses on the high-resolution analysis of single genomes or multiple single genomes from the isolated colonies on microbiological agar plates. In this study, we introduce bioinformatics innovations for a metagenomic outbreak response workflow that accurately identifies multiple Salmonella serovars at the same time. bettercallsal is one of the first analysis tools to identify multiple Salmonella enterica serotypes from metagenomic or quasi-metagenomic datasets with high accuracy, allowing these isolate-independent methods to be incorporated into surveillance and root cause investigations. It was tested on an in silico benchmark dataset comprising 29 unique Salmonella serovars, 46 non-Salmonella bacterial genomes, and 10 viral genomes at varying read depths and on previously well-characterized and sequenced non-selective primary and selective enrichments of papaya and peach samples from separate outbreak investigations that resulted in the identification of multiple Salmonella serovars using traditional isolate culturing and WGS as well as nucleic acid assays. Analyses were also conducted on these datasets using a custom-built k-mer tool, SeqSero2, and Kallisto to compare serotype calling to bettercallsal. The in silico dataset analyzed with bettercallsal achieved the maximum precision, recall, and accuracy of 100, 83, and 94%, respectively. In the papaya outbreak samples, bettercallsal identified the presence of multiple serovars in agreement with the Luminex® xMAP assay results and also identified more serovars per sample, as evidenced by NCBI SNP clustering. In peach outbreak samples, bettercallsal identified two serovars in concordance with k-mer analysis and the Luminex xMAP assay. The genome hit reported by bettercallsal clustered with the chicken isolate genome, as reported by the FDA peach outbreak investigation from sequenced isolates (WGS). Overall, bettercallsal outperformed k-mer, Seqsero2, and Kallisto in identifying multiple serovars from enrichment cultures using shotgun metagenomic sequencing.

17.
mBio ; 14(1): e0244422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475774

RESUMO

Chicks are ideal to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Taxonomic/metagenomic analyses captured the development of the chick microbiota in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm) during development. Taxonomic analysis suggests that colonization by the chicken microbiota takes place in several waves. The cecal microbiota stabilizes at day 12 posthatch with prominent Gammaproteobacteria and Clostridiales. Introduction of S. Typhimurium at day 4 posthatch disrupted the expected waves of intestinal colonization. Taxonomic and metagenomic shotgun sequencing analyses allowed us to identify species present in uninfected chicks. Untargeted metabolomics suggested different metabolic activities in infected chick microbiota. This analysis and gas chromatography-mass spectrometry on ingesta confirmed that lactic acid in cecal content coincides with the stable presence of enterococci in STm-infected chicks. Unique metabolites, including 2-isopropylmalic acid, an intermediate in the biosynthesis of leucine, were present only in the cecal content of STm-infected chicks. The metagenomic data suggested that the microbiota in STm-infected chicks contained a higher abundance of genes, from STm itself, involved in branched-chain amino acid synthesis. We generated an ilvC deletion mutant (STM3909) encoding ketol-acid-reductoisomerase, a gene required for the production of l-isoleucine and l-valine. ΔilvC mutants are disadvantaged for growth during competitive infection with the wild type. Providing the ilvC gene in trans restored the growth of the ΔilvC mutant. Our integrative approach identified biochemical pathways used by STm to establish a colonization niche in the chick intestine during development. IMPORTANCE Chicks are an ideal model to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Using taxonomic and metagenomic analyses, we captured the development of chick microbiota to 19 days posthatch in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm). We show that normal development of the microbiota takes place in waves and is altered in the presence of a pathogen. Metagenomics and metabolomics suggested that branched-chain amino acid biosynthesis is especially important for Salmonella growth in the infected chick intestine. Salmonella mutants unable to make l-isoleucine and l-valine colonize the chick intestine poorly. Restoration of the pathway for biosynthesis of these amino acids restored the colonizing ability of Salmonella. Integration of multiple analyses allowed us to correctly identify biochemical pathways used by Salmonella to establish a niche for colonization in the chick intestine during development.


Assuntos
Microbiota , Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas/microbiologia , Isoleucina , Salmonella typhimurium/metabolismo , Ceco/microbiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Valina/metabolismo , Salmonelose Animal/microbiologia , Doenças das Aves Domésticas/microbiologia
18.
Sci Transl Med ; 15(688): eabf4077, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947593

RESUMO

Angelman syndrome is a devastating neurogenetic disorder for which there is currently no effective treatment. It is caused by mutations or epimutations affecting the expression or function of the maternally inherited allele of the ubiquitin-protein ligase E3A (UBE3A) gene. The paternal UBE3A allele is imprinted in neurons of the central nervous system (CNS) by the UBE3A antisense (UBE3A-AS) transcript, which represents the distal end of the small nucleolar host gene 14 (SNHG14) transcription unit. Reactivating the expression of the paternal UBE3A allele in the CNS has long been pursued as a therapeutic option for Angelman syndrome. Here, we described the development of an antisense oligonucleotide (ASO) therapy for Angelman syndrome that targets an evolutionarily conserved region demarcating the start of the UBE3A-AS transcript. We designed and chemically optimized gapmer ASOs targeting specific sequences at the start of the human UBE3A-AS transcript. We showed that ASOs targeting this region precisely and efficiently repress the transcription of UBE3A-AS, reactivating the expression of the paternal UBE3A allele in neurotypical and Angelman syndrome induced pluripotent stem cell-derived neurons. We further showed that human-targeted ASOs administered to the CNS of cynomolgus macaques by lumbar intrathecal injection repress UBE3A-AS and reactivate the expression of the paternal UBE3A allele throughout the CNS. These findings support the advancement of this investigational molecular therapy for Angelman syndrome into clinical development (ClinicalTrials.gov, NCT04259281).


Assuntos
Síndrome de Angelman , Humanos , Síndrome de Angelman/terapia , Síndrome de Angelman/tratamento farmacológico , Alelos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Microbiol Spectr ; 10(4): e0248421, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35913176

RESUMO

Coxiella burnetii requires a type IVB secretion system (T4SS) to promote intracellular replication and virulence. We hypothesized that Coxiella employs its T4SS to secrete effectors that enable stealthy colonization of immune cells. To address this, we used RNA sequencing to compare the transcriptional response of murine bone marrow-derived macrophages (BMDM) infected with those of wild-type Coxiella and a T4SS-null mutant at 8 and 24 h postinfection. We found a T4SS-independent upregulation of proinflammatory transcripts which was consistent with a proinflammatory polarization phenotype. Despite this, infected BMDM failed to completely polarize, as evidenced by modest surface expression of CD38 and CD11c, nitrate production, and reduced proinflammatory cytokine and chemokine secretion compared to positive controls. As these BMDM permitted replication of C. burnetii, we employed them to identify T4SS effectors that are essential in the specific cellular context of a primary macrophage. We found five Himar1 transposon mutants in T4SS effectors that had a replication defect in BMDM but not J774A.1 cells. The mutants were also attenuated in a SCID mouse model of infection. Among these candidate virulence factors, we found that CBU1639 contributed to the inhibition of macrophage proinflammatory responses to Coxiella infection. These data demonstrate that while T4SS is dispensable for the stealthy invasion of primary macrophages, Coxiella has evolved multiple T4SS effectors that specifically target macrophage function to proliferate within that specific cellular context. IMPORTANCE Coxiella burnetii, the causative agent of Q fever, preferentially infects macrophages of the respiratory tract when causing human disease. This work describes how primary macrophages respond to C. burnetii at the earliest stages of infection, before bacterial replication. We found that while infected macrophages increase expression of proinflammatory genes after bacterial entry, they fail to activate the accompanying antibacterial functions that might ultimately control the infection. This disconnect between initial response and downstream function was not mediated by the bacterium's type IVB secretion system, suggesting that Coxiella has other virulence factors that dampen host responses early in the infection process. Nevertheless, we were able to identify several type IVB secreted effectors that were specifically required for survival in macrophages and mice. This work is the first to identify type IVB secretion effectors that are specifically required for infection and replication within primary macrophages.


Assuntos
Coxiella burnetii , Febre Q , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coxiella burnetii/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos SCID , Febre Q/metabolismo , Febre Q/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
20.
PLoS One ; 16(1): e0244648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33417615

RESUMO

Honey bee (Apis mellifera) queens have a remarkable organ, the spermatheca, which successfully stores sperm for years after a virgin queen mates. This study uniquely characterized and quantified the transcriptomes of the spermathecae from mated and virgin honey bee queens via RNA sequencing to identify differences in mRNA levels based on a queen's mating status. The transcriptome of drone semen was analyzed for comparison. Samples from three individual bees were independently analyzed for mated queen spermathecae and virgin queen spermathecae, and three pools of semen from ten drones each were collected from three separate colonies. In total, the expression of 11,233 genes was identified in mated queen spermathecae, 10,521 in virgin queen spermathecae, and 10,407 in drone semen. Using a cutoff log2 fold-change value of 2.0, we identified 212 differentially expressed genes between mated and virgin spermathecal queen tissues: 129 (1.4% of total) were up-regulated and 83 (0.9% of total) were down-regulated in mated queen spermathecae. Three genes in mated queen spermathecae, three genes in virgin queen spermathecae and four genes in drone semen that were more highly expressed in those tissues from the RNA sequencing data were further validated by real time quantitative PCR. Among others, expression of Kielin/chordin-like and Trehalase mRNAs was highest in the spermathecae of mated queens compared to virgin queen spermathecae and drone semen. Expression of the mRNA encoding Alpha glucosidase 2 was higher in the spermathecae of virgin queens. Finally, expression of Facilitated trehalose transporter 1 mRNA was greatest in drone semen. This is the first characterization of gene expression in the spermathecae of honey bee queens revealing the alterations in mRNA levels within them after mating. Future studies will extend to other reproductive tissues with the purpose of relating levels of specific mRNAs to the functional competence of honey bee queens and the colonies they head.


Assuntos
Abelhas/genética , Transcriptoma , Animais , Abelhas/fisiologia , Feminino , Genes de Insetos , Inseminação , Masculino , Reprodução , Sêmen/fisiologia , Comportamento Sexual Animal , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA