Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Cell ; 65(6): 1044-1055.e5, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28306503

RESUMO

Liquid-liquid phase separation (LLPS) of RNA-binding proteins plays an important role in the formation of multiple membrane-less organelles involved in RNA metabolism, including stress granules. Defects in stress granule homeostasis constitute a cornerstone of ALS/FTLD pathogenesis. Polar residues (tyrosine and glutamine) have been previously demonstrated to be critical for phase separation of ALS-linked stress granule proteins. We now identify an active role for arginine-rich domains in these phase separations. Moreover, arginine-rich dipeptide repeats (DPRs) derived from C9orf72 hexanucleotide repeat expansions similarly undergo LLPS and induce phase separation of a large set of proteins involved in RNA and stress granule metabolism. Expression of arginine-rich DPRs in cells induced spontaneous stress granule assembly that required both eIF2α phosphorylation and G3BP. Together with recent reports showing that DPRs affect nucleocytoplasmic transport, our results point to an important role for arginine-rich DPRs in the pathogenesis of C9orf72 ALS/FTLD.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Arginina/metabolismo , Grânulos Citoplasmáticos/metabolismo , Dipeptídeos/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Arginina/química , Proteína C9orf72 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/patologia , DNA Helicases , Dipeptídeos/química , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/química , Gotículas Lipídicas/metabolismo , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose , Domínios Proteicos , Proteínas/química , RNA/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Fatores de Tempo , Transfecção
2.
J Biol Chem ; 294(14): 5657-5665, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30755483

RESUMO

α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or ß-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.


Assuntos
Catequina/análogos & derivados , Metionina/química , Agregados Proteicos , Dobramento de Proteína , alfa-Sinucleína/química , Catequina/química , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Metionina/metabolismo , Oxirredução , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , alfa-Sinucleína/metabolismo
3.
Int J Mass Spectrom ; 447: 116240, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33244295

RESUMO

As a fundament in many biologically relevant processes, endocytosis in its different guises has been arousing interest for decades and still does so. This is true for the actual transport and its initiation alike. In clathrin-mediated endocytosis, a comparatively well understood endocytic pathway, a set of adaptor proteins bind specific lipids in the plasma membrane, subsequently assemble and thus form a crucial bridge from clathrin to actin for the ongoing process. These adaptor proteins are highly interesting themselves and the subject of this manuscript. Using many of the instruments that are available now in the mass spectrometry toolbox, we added some facets to the picture of how these minimal assemblies may look, how they form, and what influences the structure. Especially, lipids in the adaptor protein complexes result in reduced charging of a normal sized complex due to their specific binding position. The results further support our structural model of a double ring structure with interfacial lipids.

4.
Biophys J ; 116(8): 1420-1431, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30979547

RESUMO

PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-antitoxin module from Escherichia coli O157:H7. Although this module's toxin, antitoxin, and toxin-antitoxin complex have been more thoroughly investigated, little remains known about its transcription regulator PaaR2. Using a wide range of biophysical techniques (circular dichroism spectroscopy, size-exclusion chromatography-multiangle laser light scattering, dynamic light scattering, small-angle x-ray scattering, and native mass spectrometry), we demonstrate that PaaR2 mainly consists of α-helices and displays a concentration-dependent octameric build-up in solution and that this octamer contains a global shape that is significantly nonspherical. Thermal unfolding of PaaR2 is reversible and displays several transitions, suggesting a complex unfolding mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were combined into a unifying thermodynamic model, which suggests a five-state unfolding trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly oligomerize into an octamer depending on local protein concentrations. These findings, based on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important insights into biological function such as DNA binding and transcriptional regulation.


Assuntos
Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Termodinâmica , Transcrição Gênica
5.
Anal Chem ; 91(11): 6962-6966, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31062957

RESUMO

Native liquid extraction surface analysis (LESA) mass spectrometry allows direct analysis of folded proteins and protein complexes from biological substrates, such as dried blood spots and thin tissue sections, by use of native-like extraction/ionization solvents. Previously, we have demonstrated native LESA mass spectrometry of folded proteins up to 16 kDa as well as the 64 kDa hemoglobin tetramer, from mouse tissues. With denaturing LESA solvents, the highest mass protein detected in tissue to date is ∼37 kDa. Here, we demonstrate native LESA mass spectrometry by use of a Q Exactive UHMR Hybrid Quadrupole-Orbitrap (QE-UHMR) mass spectrometer, pushing the upper mass limit of proteins detected in tissue to >70 kDa. Moreover, a protein trimer of 42 kDa was detected and its stoichiometry confirmed by higher energy collision dissociation (HCD). The benefits of inclusion of detergents in the LESA sampling solvent are also demonstrated.


Assuntos
Espectrometria de Massas/métodos , Multimerização Proteica , Proteínas/análise , Animais , Química Encefálica , Detergentes/química , Rim/química , Masculino , Espectrometria de Massas/instrumentação , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Desnaturação Proteica , Proteínas/química , Ratos Wistar
6.
Nat Chem Biol ; 13(6): 640-646, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28369041

RESUMO

Toxin-antitoxin (TA) loci are prevalent in bacterial genomes. They are suggested to play a central role in dormancy and persister states. Under normal growth conditions, TA toxins are neutralized by their cognate antitoxins, and under stress conditions, toxins are freed and inhibit essential cellular processes using a variety of mechanisms. Here we characterize ataR-ataT, a novel TA system, from enterohemorrhagic Escherichia coli. We show that the toxin AtaT is a GNAT family enzyme that transfers an acetyl group from acetyl coenzyme A to the amine group of the methionyl aminoacyl moiety of initiator tRNA. AtaT specifically modifies Met-tRNAfMet, but no other aminoacyl-tRNAs, including the elongator Met-tRNAMet. We demonstrate that once acetylated, AcMet-tRNAfMet fails to interact with initiation factor-2 (IF2), resulting in disruption of the translation initiation complex. This work reveals a new mechanism of translation inhibition and confirms Met-tRNAfMet as a prime target to efficiently block cell growth.


Assuntos
Aminoácido N-Acetiltransferase/metabolismo , Escherichia coli , Regulação da Expressão Gênica/genética , RNA de Transferência de Metionina/metabolismo , Acetilação , Eletroforese em Gel Bidimensional , Modelos Biológicos , Biossíntese de Proteínas
7.
J Am Chem Soc ; 139(7): 2693-2701, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28124913

RESUMO

The bacterial toxin-antitoxin system CcdB-CcdA provides a mechanism for the control of cell death and quiescence. The antitoxin protein CcdA is a homodimer composed of two monomers that each contain a folded N-terminal region and an intrinsically disordered C-terminal arm. Binding of the intrinsically disordered C-terminal arm of CcdA to the toxin CcdB prevents CcdB from inhibiting DNA gyrase and thereby averts cell death. Accurate models of the unfolded state of the partially disordered CcdA antitoxin can therefore provide insight into general mechanisms whereby protein disorder regulates events that are crucial to cell survival. Previous structural studies were able to model only two of three distinct structural states, a closed state and an open state, that are adopted by the C-terminal arm of CcdA. Using a combination of free energy simulations, single-pair Förster resonance energy transfer experiments, and existing NMR data, we developed structural models for all three states of the protein. Contrary to prior studies, we find that CcdA samples a previously unknown state where only one of the disordered C-terminal arms makes extensive contacts with the folded N-terminal domain. Moreover, our data suggest that previously unobserved conformational states play a role in regulating antitoxin concentrations and the activity of CcdA's cognate toxin. These data demonstrate that intrinsic disorder in CcdA provides a mechanism for regulating cell fate.


Assuntos
Antitoxinas/química , Proteínas de Bactérias/química , Modelos Biológicos , Simulação de Dinâmica Molecular , Dobramento de Proteína
8.
Proc Natl Acad Sci U S A ; 111(48): 17170-5, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404294

RESUMO

Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility-mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Espectrometria de Massas/métodos , Mecanotransdução Celular/fisiologia , Detergentes/química , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Proteínas de Escherichia coli/ultraestrutura , Canais Iônicos/química , Canais Iônicos/fisiologia , Canais Iônicos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Octoxinol/química , Conformação Proteica
9.
J Biol Chem ; 290(7): 4178-91, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25505247

RESUMO

The multisubunit cullin RING E3 ubiquitin ligases (CRLs) target post-translationally modified substrates for ubiquitination and proteasomal degradation. The suppressors of cytokine signaling (SOCS) proteins play important roles in inflammatory processes, diabetes, and cancer and therefore represent attractive targets for therapeutic intervention. The SOCS proteins, among their other functions, serve as substrate receptors of CRL5 complexes. A member of the CRL family, SOCS2-EloBC-Cul5-Rbx2 (CRL5(SOCS2)), binds phosphorylated growth hormone receptor as its main substrate. Here, we demonstrate that the components of CRL5(SOCS2) can be specifically pulled from K562 human cell lysates using beads decorated with phosphorylated growth hormone receptor peptides. Subsequently, SOCS2-EloBC and full-length Cul5-Rbx2, recombinantly expressed in Escherichia coli and in Sf21 insect cells, respectively, were used to reconstitute neddylated and unneddylated CRL5(SOCS2) complexes in vitro. Finally, diverse biophysical methods were employed to study the assembly and interactions within the complexes. Unlike other E3 ligases, CRL5(SOCS2) was found to exist in a monomeric state as confirmed by size exclusion chromatography with inline multiangle static light scattering and native MS. Affinities of the protein-protein interactions within the multisubunit complex were measured by isothermal titration calorimetry. A structural model for full-size neddylated and unneddylated CRL5(SOCS2) complexes is supported by traveling wave ion mobility mass spectrometry data.


Assuntos
Proteínas Culina/metabolismo , Conformação Proteica , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Elonguina , Humanos , Células K562 , Espectrometria de Massas , Modelos Moleculares , Proteína NEDD8 , Ligação Proteica , Proteínas Supressoras da Sinalização de Citocina/química , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ubiquitinas/química , Ubiquitinas/genética
10.
Anal Chem ; 88(17): 8468-75, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27467405

RESUMO

The intrinsically disordered and amyloidogenic protein α-synuclein (AS) has been linked to several neurodegenerative states, including Parkinson's disease. Here, nanoelectrospray-ionization mass spectrometry (nano-ESI-MS), ion mobility (IM), and native top-down electron transfer dissociation (ETD) techniques are employed to study AS interaction with small molecules known to modulate its aggregation, such as epigallocatechin-3-gallate (EGCG) and dopamine (DA). The complexes formed by the two ligands under identical conditions reveal peculiar differences. While EGCG engages AS in compact conformations, DA preferentially binds to the protein in partially extended conformations. The two ligands also have different effects on AS structure as assessed by IM, with EGCG leading to protein compaction and DA to its extension. Native top-down ETD on the protein-ligand complexes shows how the different observed modes of binding of the two ligands could be related to their known opposite effects on AS aggregation. The results also show that the protein can bind either ligand in the absence of any covalent modifications, such as oxidation.


Assuntos
Catequina/análogos & derivados , Dopamina/química , alfa-Sinucleína/química , Sítios de Ligação , Catequina/química , Estrutura Molecular , Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray
11.
J Biol Chem ; 289(49): 34013-23, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25326388

RESUMO

The toxin Doc from the phd/doc toxin-antitoxin module targets the cellular translation machinery and is inhibited by its antitoxin partner Phd. Here we show that Phd also functions as a chaperone, keeping Doc in an active, correctly folded conformation. In the absence of Phd, Doc exists in a relatively expanded state that is prone to dimerization through domain swapping with its active site loop acting as hinge region. The domain-swapped dimer is not capable of arresting protein synthesis in vitro, whereas the Doc monomer is. Upon binding to Phd, Doc becomes more compact and is secured in its monomeric state with a neutralized active site.


Assuntos
Bacteriófago P1/genética , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Chaperonas Moleculares/química , Proteínas Virais/química , Bacteriófago P1/química , Bacteriófago P1/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica , Proteínas Virais/genética , Proteínas Virais/metabolismo
12.
Biol Chem ; 396(9-10): 991-1002, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26352204

RESUMO

Recent developments in native mass spectrometry and ion mobility have made it possible to analyze the composition and structure of membrane protein complexes in the gas-phase. In this short review we discuss the experimental strategies that allow to elucidate aspects of the dynamic structure of these important drug targets, such as the structural effects of lipid binding or detection of co-populated conformational and assembly states during gating on an ion channel. As native mass spectrometry relies on nano-electrospray of natively reconstituted proteins, a number of commonly used lipid- and detergent-based reconstitution systems have been evaluated for their compatibility with this approach, and parameters for the release of intact, native-like folded membrane proteins studied in the gas-phase. The strategy thus developed can be employed for the investigation of the subunit composition and stoichiometry, oligomeric state, conformational changes, and lipid and drug binding of integral membrane proteins.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Membrana/química , Humanos
14.
J Med Chem ; 67(12): 10436-10446, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38783480

RESUMO

Ion mobility mass spectrometry (IM-MS) can be used to analyze native proteins according to their size and shape. By sampling individual molecules, it allows us to study mixtures of conformations, as long as they have different collision cross sections and maintain their native conformation after dehydration and vaporization in the mass spectrometer. Even though conformational heterogeneity of prolyl oligopeptidase has been demonstrated in solution, it is not detectable in IM-MS. Factors that affect the conformation in solution, binding of an active site ligand, the stabilizing Ser554Ala mutation, and acidification do not qualitatively affect the collision-induced unfolding pattern. However, measuring the protection of accessible cysteines upon ligand binding provides a principle for the development of MS-based ligand screening methods.


Assuntos
Prolil Oligopeptidases , Conformação Proteica , Serina Endopeptidases , Prolil Oligopeptidases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Ligantes , Espectrometria de Mobilidade Iônica , Modelos Moleculares , Espectrometria de Massas/métodos , Domínio Catalítico , Humanos
15.
Sci Adv ; 10(7): eadl4628, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354247

RESUMO

Native mass spectrometry (MS) has become widely accepted in structural biology, providing information on stoichiometry, interactions, homogeneity, and shape of protein complexes. Yet, the fundamental assumption that proteins inside the mass spectrometer retain a structure faithful to native proteins in solution remains a matter of intense debate. Here, we reveal the gas-phase structure of ß-galactosidase using single-particle cryo-electron microscopy (cryo-EM) down to 2.6-Å resolution, enabled by soft landing of mass-selected protein complexes onto cold transmission electron microscopy (TEM) grids followed by in situ ice coating. We find that large parts of the secondary and tertiary structure are retained from the solution. Dehydration-driven subunit reorientation leads to consistent compaction in the gas phase. By providing a direct link between high-resolution imaging and the capability to handle and select protein complexes that behave problematically in conventional sample preparation, the approach has the potential to expand the scope of both native mass spectrometry and cryo-EM.


Assuntos
Proteínas , Manejo de Espécimes , Microscopia Crioeletrônica/métodos , Proteínas/química , Espectrometria de Massas/métodos , beta-Galactosidase , Manejo de Espécimes/métodos
16.
Nat Commun ; 13(1): 3610, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750666

RESUMO

Recent interest in biological and synthetic DNA nanostructures has highlighted the need for methods to comprehensively characterize intermediates and end products of multimeric DNA assembly. Here we use native mass spectrometry in combination with ion mobility to determine the mass, charge state and collision cross section of noncovalent DNA assemblies, and thereby elucidate their structural composition, oligomeric state, overall size and shape. We showcase the approach with a prototypical six-subunit DNA nanostructure to reveal how its assembly is governed by the ionic strength of the buffer, as well as how the mass and mobility of heterogeneous species can be well resolved by careful tuning of instrumental parameters. We find that the assembly of the hexameric, barrel-shaped complex is guided by positive cooperativity, while previously undetected higher-order 12- and 18-mer assemblies are assigned to defined larger-diameter geometric structures. Guided by our insight, ion mobility-mass spectrometry is poised to make significant contributions to understanding the formation and structural diversity of natural and synthetic oligonucleotide assemblies relevant in science and technology.


Assuntos
Espectrometria de Mobilidade Iônica , Nanoestruturas , DNA , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos
17.
Front Mol Biosci ; 9: 950871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936790

RESUMO

The Two-Partner secretion pathway mediates protein transport across the outer membrane of Gram-negative bacteria. TpsB transporters belong to the Omp85 superfamily, whose members catalyze protein insertion into, or translocation across membranes without external energy sources. They are composed of a transmembrane ß barrel preceded by two periplasmic POTRA domains that bind the incoming protein substrate. Here we used an integrative approach combining in vivo assays, mass spectrometry, nuclear magnetic resonance and electron paramagnetic resonance techniques suitable to detect minor states in heterogeneous populations, to explore transient conformers of the TpsB transporter FhaC. This revealed substantial, spontaneous conformational changes on a slow time scale, with parts of the POTRA2 domain approaching the lipid bilayer and the protein's surface loops. Specifically, our data indicate that an amphipathic POTRA2 ß hairpin can insert into the ß barrel. We propose that these motions enlarge the channel and initiate substrate secretion. Our data propose a solution to the conundrum how TpsB transporters mediate protein secretion without the need for cofactors, by utilizing intrinsic protein dynamics.

18.
PNAS Nexus ; 1(4): pgac153, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714824

RESUMO

Despite tremendous advances in sample preparation and classification algorithms for electron cryomicroscopy (cryo-EM) and single-particle analysis (SPA), sample heterogeneity remains a major challenge and can prevent access to high-resolution structures. In addition, optimization of preparation conditions for a given sample can be time-consuming. In the current work, it is demonstrated that native electrospray ion-beam deposition (native ES-IBD) is an alternative, reliable approach for the preparation of extremely high-purity samples, based on mass selection in vacuum. Folded protein ions are generated by native electrospray ionization, separated from other proteins, contaminants, aggregates, and fragments, gently deposited on cryo-EM grids, frozen in liquid nitrogen, and subsequently imaged by cryo-EM. We demonstrate homogeneous coverage of ice-free cryo-EM grids with mass-selected protein complexes. SPA reveals that the complexes remain folded and assembled, but variations in secondary and tertiary structures are currently limiting information in 2D classes and 3D EM density maps. We identify and discuss challenges that need to be addressed to obtain a resolution comparable to that of the established cryo-EM workflow. Our results show the potential of native ES-IBD to increase the scope and throughput of cryo-EM for protein structure determination and provide an essential link between gas-phase and solution-phase protein structures.

19.
Biochemistry ; 50(41): 8804-12, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21928827

RESUMO

We report the effects of binding of Mg(2+) to the second Ca(2+)-binding domain (CBD2) of the sodium-calcium exchanger. CBD2 is known to bind two Ca(2+) ions using its Ca(2+)-binding sites I and II. Here, we show by nuclear magnetic resonance (NMR), circular dichroism, isothermal titration calorimetry, and mutagenesis that CBD2 also binds Mg(2+) at both sites, but with significantly different affinities. The results from Mg(2+)-Ca(2+) competition experiments show that Ca(2+) can replace Mg(2+) from site I, but not site II, and that Mg(2+) binding affects the affinity for Ca(2+). Furthermore, thermal unfolding circular dichroism data demonstrate that Mg(2+) binding stabilizes the domain. NMR chemical shift perturbations and (15)N relaxation data reveal that Mg(2+)-bound CBD2 adopts a state intermediate between the apo and fully Ca(2+)-loaded forms. Together, the data show that at physiological Mg(2+) concentrations CBD2 is loaded with Mg(2+) preferentially at site II, thereby stabilizing and structuring the domain and altering its affinity for Ca(2+).


Assuntos
Cálcio/química , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Animais , Anisotropia , Sítios de Ligação , Soluções Tampão , Calorimetria/métodos , Dicroísmo Circular , Cães , Cinética , Magnésio/química , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Nitrogênio/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Termodinâmica
20.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 1): 31-39, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929184

RESUMO

The Escherichia coli rnlAB operon encodes a toxin-antitoxin module that is involved in protection against infection by bacteriophage T4. The full-length RnlA-RnlB toxin-antitoxin complex as well as the toxin RnlA were purified to homogeneity and crystallized. When the affinity tag is placed on RnlA, RnlB is largely lost during purification and the resulting crystals exclusively comprise RnlA. A homogeneous preparation of RnlA-RnlB containing stoichiometric amounts of both proteins could only be obtained using a His tag placed C-terminal to RnlB. Native mass spectrometry and SAXS indicate a 1:1 stoichiometry for this RnlA-RnlB complex. Crystals of the RnlA-RnlB complex belonged to space group C2, with unit-cell parameters a = 243.32, b = 133.58, c = 55.64 Å, ß = 95.11°, and diffracted to 2.6 Šresolution. The presence of both proteins in the crystals was confirmed and the asymmetric unit is likely to contain a heterotetramer with RnlA2:RnlB2 stoichiometry.


Assuntos
Proteínas de Escherichia coli/química , Antitoxinas/química , Toxinas Bacterianas/química , Bacteriófago T4/metabolismo , Cromatografia Líquida , Cristalização , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Expressão Gênica/genética , Óperon/genética , Espalhamento a Baixo Ângulo , Espectrometria de Massas em Tandem , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA