Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mult Scler ; 30(1): 103-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38084497

RESUMO

INTRODUCTION: Multiple sclerosis (MS) is a leading cause of disability among young adults, but standard clinical scales may not accurately detect subtle changes in disability occurring between visits. This study aims to explore whether wearable device data provides more granular and objective measures of disability progression in MS. METHODS: Remote Assessment of Disease and Relapse in Central Nervous System Disorders (RADAR-CNS) is a longitudinal multicenter observational study in which 400 MS patients have been recruited since June 2018 and prospectively followed up for 24 months. Monitoring of patients included standard clinical visits with assessment of disability through use of the Expanded Disability Status Scale (EDSS), 6-minute walking test (6MWT) and timed 25-foot walk (T25FW), as well as remote monitoring through the use of a Fitbit. RESULTS: Among the 306 patients who completed the study (mean age, 45.6 years; females 67%), confirmed disability progression defined by the EDSS was observed in 74 patients, who had approximately 1392 fewer daily steps than patients without disability progression. However, the decrease in the number of steps experienced over time by patients with EDSS progression and stable patients was not significantly different. Similar results were obtained with disability progression defined by the 6MWT and the T25FW. CONCLUSION: The use of continuous activity monitoring holds great promise as a sensitive and ecologically valid measure of disability progression in MS.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação da Deficiência , Esclerose Múltipla/diagnóstico , Teste de Caminhada , Caminhada/fisiologia , Adulto
2.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000917

RESUMO

This study explores the feasibility of a wearable system to monitor vital signs during sleep. The system incorporates five inertial measurement units (IMUs) located on the waist, the arms, and the legs. To evaluate the performance of a novel framework, twenty-three participants underwent a sleep study, and vital signs, including respiratory rate (RR) and heart rate (HR), were monitored via polysomnography (PSG). The dataset comprises individuals with varying severity of sleep-disordered breathing (SDB). Using a single IMU sensor positioned at the waist, strong correlations of more than 0.95 with the PSG-derived vital signs were obtained. Low inter-participant mean absolute errors of about 0.66 breaths/min and 1.32 beats/min were achieved, for RR and HR, respectively. The percentage of data available for analysis, representing the time coverage, was 98.3% for RR estimation and 78.3% for HR estimation. Nevertheless, the fusion of data from IMUs positioned at the arms and legs enhanced the inter-participant time coverage of HR estimation by over 15%. These findings imply that the proposed methodology can be used for vital sign monitoring during sleep, paving the way for a comprehensive understanding of sleep quality in individuals with SDB.


Assuntos
Frequência Cardíaca , Polissonografia , Sono , Sinais Vitais , Dispositivos Eletrônicos Vestíveis , Humanos , Masculino , Feminino , Frequência Cardíaca/fisiologia , Polissonografia/instrumentação , Polissonografia/métodos , Sinais Vitais/fisiologia , Adulto , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Sono/fisiologia , Taxa Respiratória/fisiologia , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/fisiopatologia , Pessoa de Meia-Idade , Adulto Jovem
3.
Sensors (Basel) ; 23(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447866

RESUMO

The aim of this study was to investigate the feasibility of automatically assessing the 2-Minute Walk Distance (2MWD) for monitoring people with multiple sclerosis (pwMS). For 154 pwMS, MS-related clinical outcomes as well as the 2MWDs as evaluated by clinicians and derived from accelerometer data were collected from a total of 323 periodic clinical visits. Accelerometer data from a wearable device during 100 home-based 2MWD assessments were also acquired. The error in estimating the 2MWD was validated for walk tests performed at hospital, and then the correlation (r) between clinical outcomes and home-based 2MWD assessments was evaluated. Robust performance in estimating the 2MWD from the wearable device was obtained, yielding an error of less than 10% in about two-thirds of clinical visits. Correlation analysis showed that there is a strong association between the actual and the estimated 2MWD obtained either at hospital (r = 0.71) or at home (r = 0.58). Furthermore, the estimated 2MWD exhibits moderate-to-strong correlation with various MS-related clinical outcomes, including disability and fatigue severity scores. Automatic assessment of the 2MWD in pwMS is feasible with the usage of a consumer-friendly wearable device in clinical and non-clinical settings. Wearable devices can also enhance the assessment of MS-related clinical outcomes.


Assuntos
Esclerose Múltipla , Humanos , Caminhada , Teste de Caminhada , Fadiga
4.
Pattern Recognit ; 123: 108403, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34720200

RESUMO

This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of 95.3 % , a sensitivity of 100 % and a specificity of 90.6 % , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate.

5.
Front Neurol ; 15: 1415970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903169

RESUMO

Introduction: Conventional care in Parkinson's disease (PD) faces limitations due to the significant time and location commitments needed for regular assessments, lacking quantitative measurements. Telemonitoring offers clinicians an opportunity to evaluate patient symptomatology throughout the day during activities of daily living. Methods: The progression of PD symptoms over a two-year period was investigated in patients undergoing traditional evaluation, supplemented by insights from ambulatory measurements. Physicians integrated a telemonitoring device, the PDMonitor®, into daily practice, using it for informed medication adjustments. Results: Statistical analyses examining intra-subject changes for 17 subjects revealed a significant relative decrease of -43.9% in the device-reported percentage of time spent in "OFF" state (from 36.2 to 20.3%). Following the 24-month period, the majority of the subjects improved or exhibited stable symptom manifestation. In addition to positively impacting motor symptom control, telemonitoring was found to enhance patient satisfaction about their condition, medication effectiveness, and communication with physicians. Discussion: Considering that motor function is significantly worsened over time in patients with PD, these findings suggest a positive impact of objective telemonitoring on symptoms control. Patient satisfaction regarding disease management through telemonitoring can potentially improve adherence to treatment plans. In conclusion, remote continuous monitoring paves the way for a paradigm shift in PD, focusing on actively managing and potentially improve symptoms control.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36982069

RESUMO

The present study analyzes the effects of each containment phase of the first COVID-19 wave on depression levels in a cohort of 121 adults with a history of major depressive disorder (MDD) from Catalonia recruited from 1 November 2019, to 16 October 2020. This analysis is part of the Remote Assessment of Disease and Relapse-MDD (RADAR-MDD) study. Depression was evaluated with the Patient Health Questionnaire-8 (PHQ-8), and anxiety was evaluated with the Generalized Anxiety Disorder-7 (GAD-7). Depression's levels were explored across the phases (pre-lockdown, lockdown, and four post-lockdown phases) according to the restrictions of Spanish/Catalan governments. Then, a mixed model was fitted to estimate how depression varied over the phases. A significant rise in depression severity was found during the lockdown and phase 0 (early post-lockdown), compared with the pre-lockdown. Those with low pre-lockdown depression experienced an increase in depression severity during the "new normality", while those with high pre-lockdown depression decreased compared with the pre-lockdown. These findings suggest that COVID-19 restrictions affected the depression level depending on their pre-lockdown depression severity. Individuals with low levels of depression are more reactive to external stimuli than those with more severe depression, so the lockdown may have worse detrimental effects on them.


Assuntos
COVID-19 , Transtorno Depressivo Maior , Adulto , Humanos , COVID-19/epidemiologia , Transtorno Depressivo Maior/epidemiologia , SARS-CoV-2 , Estudos Longitudinais , Espanha/epidemiologia , Controle de Doenças Transmissíveis , Ansiedade , Depressão
7.
Front Physiol ; 14: 1145818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089424

RESUMO

Objective: The aim of this study was to evaluate the association between changes in the autonomic control of cardiorespiratory system induced by walk tests and outcome measures in people with Multiple Sclerosis (pwMS). Methods: Electrocardiogram (ECG) recordings of 148 people with Relapsing-Remitting MS (RRMS) and 58 with Secondary Progressive MS (SPMS) were acquired using a wearable device before, during, and after walk test performance from a total of 386 periodical clinical visits. A subset of 90 participants repeated a walk test at home. Various MS-related symptoms, including fatigue, disability, and walking capacity were evaluated at each clinical visit, while heart rate variability (HRV) and ECG-derived respiration (EDR) were analyzed to assess autonomic nervous system (ANS) function. Statistical tests were conducted to assess differences in ANS control between pwMS grouped based on the phenotype or the severity of MS-related symptoms. Furthermore, correlation coefficients (r) were calculated to assess the association between the most significant ANS parameters and MS-outcome measures. Results: People with SPMS, compared to RRMS, reached higher mean heart rate (HRM) values during walk test, and larger sympathovagal balance after test performance. Furthermore, pwMS who were able to adjust their HRM and ventilatory values, such as respiratory rate and standard deviation of the ECG-derived respiration, were associated with better clinical outcomes. Correlation analyses showed weak associations between ANS parameters and clinical outcomes when the Multiple Sclerosis phenotype is not taken into account. Blunted autonomic response, in particular HRM reactivity, was related with worse walking capacity, yielding r = 0.36 r = 0.29 (RRMS) and r > 0.5 (SPMS). A positive strong correlation r > 0.7 r > 0.65 between cardiorespiratory parameters derived at hospital and at home was also found. Conclusion: Autonomic function, as measured by HRV, differs according to MS phenotype. Autonomic response to walk tests may be useful for assessing clinical outcomes, mainly in the progressive stage of MS. Participants with larger changes in HRM are able to walk longer distance, while reduced ventilatory function during and after walk test performance is associated with higher fatigue and disability severity scores. Monitoring of disorder severity could also be feasible using ECG-derived cardiac and respiratory parameters recorded with a wearable device at home.

8.
Physiol Meas ; 44(11)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37494945

RESUMO

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.


Assuntos
Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Monitores de Aptidão Física , Processamento de Sinais Assistido por Computador , Frequência Cardíaca/fisiologia
9.
J Clin Med ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36498739

RESUMO

BACKGROUND: Changes in lifestyle, finances and work status during COVID-19 lockdowns may have led to biopsychosocial changes in people with pre-existing vulnerabilities such as Major Depressive Disorders (MDDs) and Multiple Sclerosis (MS). METHODS: Data were collected as a part of the RADAR-CNS (Remote Assessment of Disease and Relapse-Central Nervous System) program. We analyzed the following data from long-term participants in a decentralized multinational study: symptoms of depression, heart rate (HR) during the day and night; social activity; sedentary state, steps and physical activity of varying intensity. Linear mixed-effects regression analyses with repeated measures were fitted to assess the changes among three time periods (pre, during and post-lockdown) across the groups, adjusting for depression severity before the pandemic and gender. RESULTS: Participants with MDDs (N = 255) and MS (N = 214) were included in the analyses. Overall, depressive symptoms remained stable across the three periods in both groups. A lower mean HR and HR variation were observed between pre and during lockdown during the day for MDDs and during the night for MS. HR variation during rest periods also decreased between pre- and post-lockdown in both clinical conditions. We observed a reduction in physical activity for MDDs and MS upon the introduction of lockdowns. The group with MDDs exhibited a net increase in social interaction via social network apps over the three periods. CONCLUSIONS: Behavioral responses to the lockdown measured by social activity, physical activity and HR may reflect changes in stress in people with MDDs and MS. Remote technology monitoring might promptly activate an early warning of physical and social alterations in these stressful situations. Future studies must explore how stress does or does not impact depression severity.

10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5473-5476, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892364

RESUMO

The present study investigates the differences in autonomic nervous system (ANS) function and stress response between patients with major depressive disorder (MDD) and healthy subjects by measuring changes in ANS biomarkers. ANS-related parameters are derived from various biosignals during a mental stress protocol consisting of a basal, stress, and recovery phase. The feature set consists of ANS biomarkers such as the heart rate (HR) derived from the electrocardiogram, the respiratory rate derived from the respiration signal, vascular parameters obtained from a model-based photoplethysmographic pulse waveform analysis, and cardiorespiratory coupling indices derived from the joint analysis of the heart rate variability (HRV) and respiratory signals. In particular, linear cardiorespiratory interactions are quantified by means of time-frequency coherence, while interactions of quadratic nonlinear nature between HRV and respiration are quantified by means of real wavelet biphase. The intra-subject difference of a feature value between two phases of the protocol, the so-called autonomic reactivity, is considered as a ANS biomarker as well. The performance of ANS biomarkers on discriminating MDD patients is evaluated using a classification pipeline. The results show that the most discriminative ANS biomarkers are related with differences in HR and autonomic reactivity of both vascular and nonlinear cardiorespiratory coupling indices. Differences in autonomic reactivity imply that MDD and healthy subjects differ in their ability to cope with stress. Considering only HR and vascular characteristics a linear support-vector machine classifier yields to accuracy 72.5% and F1-score 73.2%. However, taking into account the nonlinear cardiorespiratory coupling indices, the classification performance improves, yielding to accuracy 77.5% and F1-score 78.0%.Clinical relevance- Changes in the nonlinear properties of the cardiorespiratory system during stress may yield additional information on the assessment of depression.


Assuntos
Transtorno Depressivo Maior , Sistema Nervoso Autônomo , Depressão , Transtorno Depressivo Maior/diagnóstico , Eletrocardiografia , Frequência Cardíaca , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA