RESUMO
The presence of a tactile sensor is essential to hold an object and manipulate it without damage. The tactile information helps determine whether an object is stably held. If a tactile sensor is installed at wherever the robot and the object touch, the robot could interact with more objects. In this paper, a skin type slip sensor that can be attached to the surface of a robot with various curvatures is presented. A simple mechanical sensor structure enables the cut and fit of the sensor according to the curvature. The sensor uses a non-array structure and can operate even if a part of the sensor is cut off. The slip was distinguished using a simple vibration signal received from the sensor. The signal is transformed into the time-frequency domain, and the slippage was determined using an artificial neural network. The accuracy of slip detection was compared using four artificial neural network models. In addition, the strengths and weaknesses of each neural network model were analyzed according to the data used for training. As a result, the developed sensor detected slip with an average of 95.73% accuracy at various curvatures and contact points.
RESUMO
We have prepared a series of size-diverse unnatural nucleotides containing fluorescent (dApyrTP, dUpyrTP, dUantTP, dUthiTP) and quencher (dUazoTP) units, as well as nucleotides presenting small functional groups (dAethTP, dAoctTP, dUethTP, dUiodTP), all based on deoxyadenosine and deoxyuridine, and examined their suitability for use in enzymatic incorporation and extension into DNA. We observed a size-dependence of the incorporation and extension capability (following the order dUiodTP=dUethTP=dUthiTP>dUazoTP>dUpyrTP>dUantTP) during primer extension. This result was supported by circular dichroism (CD) spectra, which revealed a trend in the different B-form DNA structures depending on the size of the unit at the 5-position of the deoxyuridine (dUiodTP>dUethTP>dUthiTP>dUpyrTP), obtained from the PCR products. Interestingly, dUthiTP could be incorporated and extended into long DNA strands during primer extension and even PCR amplification, with CD spectroscopy confirming a stable secondary B-form duplex DNA structure. We observed full-length extension products even when combining dUthiTP with a template containing 24 continuous dA units during the primer extension. Thus, we believe that dUthiTP is a promising fluorescent nucleotide for a diverse range of biological applications requiring multiple incorporation and extension directly without disruption of B-form DNA structures.
Assuntos
DNA/metabolismo , Corantes Fluorescentes/química , Nucleotídeos/metabolismo , Dicroísmo Circular , DNA/química , DNA de Forma B/química , DNA de Forma B/metabolismo , Conformação de Ácido Nucleico , Nucleotídeos/química , Reação em Cadeia da Polimerase , Pirenos/químicaRESUMO
Meloidogyne incognita is a common root-knot nematode with a wide range of plant hosts. We aimed to study the metabolites produced at each stage of the nematode life cycle to understand its development. Metabolites of Meloidogyne incognita were extracted at egg, J2, J3, J4, and female stages and 110 metabolites with available standards were quantified using CE-TOF/MS. Analyses indicated abundance of stage-specific metabolites with the exception of J3 and J4 stages which shared similar metabolic profiles. The egg stage showed increased abundance in glycolysis and energy metabolism related metabolites while the J2 metabolites are associated with tissue formation, motility, and neurotransmission. The J3 and J4 stages indicated amino acid metabolism and urea cycle- related metabolites. The female stage was characterized with polyamine synthesis, antioxidant activity, and synthesis of reproduction related metabolites. Such metabolic profiling helps us understand the dynamic physiological changes related to each developmental stage of the root-knot nematode life cycle.
Assuntos
Metaboloma , Metabolômica , Tylenchoidea/metabolismo , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Estágios do Ciclo de Vida , Redes e Vias Metabólicas , Metabolômica/métodos , Doenças das Plantas/parasitologia , Tylenchoidea/crescimento & desenvolvimentoRESUMO
MAIN CONCLUSION: Genome-wide screening of Saccharomyces cerevisiae revealed that signaling pathways related to the alkaline pH stress contribute to resistance to plant antimicrobial peptide, Pn-AMP1. Plant antimicrobial peptides (AMPs) are considered to be promising candidates for controlling phytopathogens. Pn-AMP1 is a hevein-type plant AMP that shows potent and broad-spectrum antifungal activity. Genome-wide chemogenomic screening was performed using heterozygous and homozygous diploid deletion pools of Saccharomyces cerevisiae as a chemogenetic model system to identify genes whose deletion conferred enhanced sensitivity to Pn-AMP1. This assay identified 44 deletion strains with fitness defects in the presence of Pn-AMP1. Strong fitness defects were observed in strains with deletions of genes encoding components of several pathways and complex known to participate in the adaptive response to alkaline pH stress, including the cell wall integrity (CWI), calcineurin/Crz1, Rim101, SNF1 pathways and endosomal sorting complex required for transport (ESCRT complex). Gene ontology (GO) enrichment analysis of these genes revealed that the most highly overrepresented GO term was "cellular response to alkaline pH". We found that 32 of the 44 deletion strains tested (72 %) showed significant growth defects compared with their wild type at alkaline pH. Furthermore, 9 deletion strains (20 %) exhibited enhanced sensitivity to Pn-AMP1 at ambient pH compared to acidic pH. Although several hundred plant AMPs have been reported, their modes of action remain largely uncharacterized. This study demonstrates that the signaling pathways that coordinate the adaptive response to alkaline pH also confer resistance to a hevein-type plant AMP in S. cerevisiae. Our findings have broad implications for the design of novel and potent antifungal agents.
Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Plantas/fisiologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Peptídeos Catiônicos Antimicrobianos/fisiologia , Estudo de Associação Genômica Ampla , Concentração de Íons de Hidrogênio , Imunidade Vegetal/fisiologia , Lectinas de Plantas/metabolismo , Lectinas de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologiaRESUMO
Bakanae disease is a destructive rice disease in South Korea caused by Fusarium fujikuroi infection. Chemical fungicides have been used to manage the disease, but the emergence of fungicide-resistant strains has gradually increased. Two chelating agents, chitosan oligosaccharides (COS) and ethylenediaminetetraacetatic acid (EDTA), are well known as biosafe and biocompatible antimicrobial agents. In this study, we compared the actions of COS and EDTA to gain a better understanding of the underlying antimicrobial activities and to evaluate them as eco-friendly fungicides against F. fujikuroi. While COS exhibited a rapid fungicidal effect on hyphal growing cells within 5 min, EDTA had a fungistatic effect on reversible growth inhibition. Scanning electron microscopy revealed that COS treatment resulted in pore-formation and cellular leakage along the growing hyphae, whereas EDTA caused no significant morphological changes. COS activity was greatly suppressed by the addition of Ca(2+) to the medium, and EDTA action was largely suppressed by Mn(2+) and slightly by Ca(2+), respectively. Taken together, these results indicated that two chelating agents, COS and EDTA, have different modes of antimicrobial action on F. fujikuroi. Thus, the combination of chelating agents having different modes of action might be an effective disease management strategy to prevent or delay the development of fungicide-resistant strains.
Assuntos
Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Ácido Edético/farmacologia , Fusarium/efeitos dos fármacos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/terapiaRESUMO
In this study, we investigated global changes in miRNAs of Meloidogyne incognita throughout its life cycle. Small RNA sequencing resulted in approximately 62, 38, 38, 35, and 39 Mb reads in the egg, J2, J3, J4, and female stages, respectively. Overall, we identified 2724 known and 383 novel miRNAs (read count > 10) from all stages, of which 169 known and 13 novel miRNA were common to all the five stages. Among the stage-specific miRNAs, miR-286 was highly expressed in eggs, miR-2401 in J2, miR-8 and miR-187 in J3, miR-6736 in J4, and miR-17 in the female stages. These miRNAs are reported to be involved in embryo and neural development, muscular function, and control of apoptosis. Cluster analysis indicated the presence of 91 miRNA clusters, of which 36 clusters were novel and identified in this study. Comparison of miRNA families with other nematodes showed 17 families to be commonly absent in animal parasitic nematodes and M. incognita. Validation of 43 predicted common and stage-specific miRNA by quantitative PCR (qPCR) indicated their expression in the nematode. Stage-wise exploration of M. incognita miRNAs has not been carried out before and this work presents information on common and stage-specific miRNAs of the root-knot nematode.
Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , MicroRNAs/genética , RNA de Helmintos/genética , Tylenchoidea/genética , Animais , Sequência de Bases , Análise por Conglomerados , Feminino , MicroRNAs/química , MicroRNAs/classificação , Modelos Moleculares , Conformação de Ácido Nucleico , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , RNA de Helmintos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Tylenchoidea/crescimento & desenvolvimentoRESUMO
1-Aminocyclopropane-1-carboxylic acid (ACC) is a biosynthetic precursor of ethylene, a gaseous plant hormone which controls a myriad of aspects of development and stress adaptation in higher plants. Here, we identified a mutant in Arabidopsis thaliana, designated as ACC-resistant2 (are2), displaying a dose-dependent resistance to exogenously applied ACC. Physiological analyses revealed that mutation of are2 impaired various aspects of exogenous ACC-induced ethylene responses, while not affecting sensitivity to other plant hormones during seedling development. Interestingly, the are2 mutant was normally sensitive to gaseous ethylene, compared with the wild type. Double mutant analysis showed that the ethylene-overproducing mutations, eto1 or eto3, and the constitutive ethylene signaling mutation, ctr1 were epistatic to the are2 mutation. These results suggest that the are2 mutant is not defective in ethylene biosynthesis or ethylene signaling per se. Map-based cloning of ARE2 demonstrated that LYSINE HISTIDINE TRANSPORTER1 (LHT1), encoding an amino acid transporter, is the gene responsible. An uptake experiment with radiolabeled ACC indicated that mutations of LHT1 reduced, albeit not completely, uptake of ACC. Further, we performed an amino acid competition assay and found that two amino acids, alanine and glycine, known as substrates of LHT1, could suppress the ACC-induced triple response in a LHT1-dependent way. Taken together, these results provide the first molecular genetic evidence supporting that a class of amino acid transporters including LHT1 takes part in transport of ACC, thereby influencing exogenous ACC-induced ethylene responses in A. thaliana.
Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos Cíclicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Alelos , Aminoácidos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Radioisótopos de Carbono , Mapeamento Cromossômico , Clonagem Molecular , Epistasia Genética/efeitos dos fármacos , Etilenos/metabolismo , Etilenos/farmacologia , MutaçãoRESUMO
Under the Kyoto Protocol, a global governmental response to climate change, protocol signatories make an effort to cut their greenhouse gas emissions. South Korea is not included in the list of Annex I countries; yet, South Korea is the seventh highest emitter of CO2. The South Korean government has enacted various institutional policies to encourage greenhouse gas reductions. While previous studies have focused on the guidance that reflects the stance of suppliers in the carbon market, this study focuses on South Korean firms' actual demand for forest carbon credits. By applying the contingent valuation method, we estimated domestic firms' willingness to pay for forest carbon credits. We then applied a rank-ordered logistic regression to confirm whether the rank of forest carbon credits, as compared to any other carbon credit, is influenced by a firm's characteristics. The results showed that Korean firms are willing to pay 5.45 USD/tCO2 and 7.77 USD/tCO2 for forest carbon credits in domestic and overseas forest carbon projects, respectively. Therefore, the introduction of forest carbon credits in the Korean carbon market seems reasonable. Analysis of the priority rankings of forest carbon credits, however, demonstrated that forestry projects were least likely to be ranked by firms as their first priority. Although relative preferences for forest carbon credits were influenced by individual firms' characteristics such as prior experience of environmental CSR related activities and whether the firm established an emissions reduction plan, the impact of perceived behavior control, whether the firm was included in the emissions target management scheme on forest carbon credits was negligible. Therefore, forest carbon credits are not a feasible solution without strong government support or institutional instruments. The results of this study are expected to provide policy makers with realistic approaches to formulate climatic change-related policies.
Assuntos
Comércio , Conservação dos Recursos Naturais/métodos , Florestas , Efeito Estufa/economia , Carbono/análise , Efeito Estufa/prevenção & controle , República da CoreiaRESUMO
To make robots more human-like and safer to use around humans, artificial muscles exhibiting compliance have gained significant attention from researchers. However, despite having excellent performance, pneumatic artificial muscles (PAMs) have failed to gain significant traction in commercial mobile applications due to their requirement to be tethered to a pneumatic source. This study presents a thermo-PAM called Thermo-PAM that relies on heating of a volume of air to produce a deformation. This allows for pneumatic actuation using only an electrical power source and thus enables pumpless pneumatic actuation. The actuator uses a high ratio between the heating volume and the deformable volume to produce a high actuation force throughout its entire motion and can produce either contractile or extension motions. The controllability of the actuator was demonstrated as well as its ability to handle heavy payloads. Moreover, it is possible to rely on either positive or negative pressure actuation modes where the positive pressure actuation mode actuates when heated and the negative pressure actuation mode relaxes when heated. The ability to use Thermo-PAMs for different modes of actuation with different operation methods makes the proposed actuator highly versatile and demonstrates its potential for advanced pumpless robotic applications.
Assuntos
Músculo Esquelético , Robótica , Humanos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Movimento (Física) , Robótica/métodosRESUMO
A human can intuitively perceive and comprehend complicated tactile information because the cutaneous receptors distributed in the fingertip skin receive different tactile stimuli simultaneously and the tactile signals are immediately transmitted to the brain. Although many research groups have attempted to mimic the structure and function of human skin, it remains a challenge to implement human-like tactile perception process inside one system. In this study, we developed a real-time and multimodal tactile system that mimics the function of cutaneous receptors and the transduction of tactile stimuli from receptors to the brain, by using multiple sensors, a signal processing and transmission circuit module, and a signal analysis module. The proposed system is capable of simultaneously acquiring four types of decoupled tactile information with a compact system, thereby enabling differentiation between various tactile stimuli, texture characteristics, and consecutive complex motions. This skin-like three-dimensional integrated design provides further opportunities in multimodal tactile sensing systems.
Assuntos
Pele , Percepção do Tato , Humanos , Tato/fisiologia , Dedos , EncéfaloRESUMO
A tactile display is an important tool to help humans interact with machines by using touch. In this paper, we present a transparent and stretchable graphene-based actuator for advanced tactile displays. The proposed actuator is composed of transparent and compliant graphene electrodes and a dielectric elastomer substrate. Since the electrode is coated onto the appointed region of the substrate layer by layer, only the area of the dielectric elastomer substrate with electrodes bumps up in response to the input voltage, which consequently produces actuation. The actuator is proven to be operable while preserving its electrical and mechanical properties even under 25% stretching. Also, the simple fabrication of the proposed actuator is cost-effective and can easily be extended to multiple arrays. The actuator is expected to be applicable to various applications including tactile displays, vari-focal lenses etc.
Assuntos
Grafite , Tato , Módulo de Elasticidade , Elastômeros , Eletrodos , Humanos , Nanotecnologia , Nanotubos de Carbono , Fenômenos Ópticos , TransdutoresRESUMO
Twisted and coiled actuators (TCAs), which are light but capable of producing significant power, were developed in recent times. After their introduction, there have been numerous improvements in performance, including development of techniques such as actuation strain and heating methods. However, the development of robots using TCA is still in its early stages. In this study, a bionic arm driven by TCAs was developed for light and flexible operation. The aim of this study was to gain a foothold in the future of robot development using TCA, which is considered as the appropriate artificial muscle. The main developments were with regard to the design (from actuator design to system design), system configuration for control, and control method. First, a process technology for repeatedly manufacturing TCA, which can be used practically and delivers sufficient performance, was developed. Based on the developed actuator, a joint was designed to move the elbow and hand. The final bionic arm was developed by integrating the TCA, pulley joint, and control system. It moved the elbow up to 100° and allowed the hand to move in three degrees of freedom. Using the control method for each joint, we were able to show the movement by using the hand and elbow.
Assuntos
Braço , Robótica , Biônica , Robótica/métodos , Músculos , Movimento/fisiologiaRESUMO
Dielectric elastomers with low elastic stiffness and high dielectric constant are smart materials that produce large strains (up to 300%) and belong to the group of electroactive polymers. Dielectric elastomer actuators are made from films of dielectric elastomers coated on both sides with compliant electrode material. Poly(3,4-ethylenedioxythiophene) (PEDOT), which is known as a transparent conducting polymer, has been widely used as an interfacial layer or polymer electrode in polymer electronic devices. In this study, we propose the transparent dielectric elastomer as a material of actuator driving variable-focus lens system using PEDOT as a transparent electrode. The variable-focus lens module has light transmittance up to 70% and maximum displacement up to 450. When voltage is applied to the fabricated lens module, optical focal length is changed. We anticipate our research to be a starting point for new model of variable-focus lens system. This system could find applications in portable devices, such as digital cameras, camcorder, and cell phones.
RESUMO
Leaf senescence, which constitutes the final stage of leaf development, involves programmed cell death and is intricately regulated by various internal and environmental signals that are incorporated with age-related information. ABA plays diverse and important physiological roles in plants, and is involved in various developmental events and stress responses. ABA has long been regarded as a positive regulator of leaf senescence. However, the cellular mediators of ABA-induced senescence have not been identified. We sought to understand the ABA-induced senescence signaling process in Arabidopsis by examining the function of an ABA- and age-induced gene, RPK1, which encodes a membrane-bound, leucine-rich repeat-containing receptor kinase (receptor protein kinase 1). Loss-of-function mutants in RPK1 were significantly delayed in age-dependent senescence. Furthermore, rpk1 mutants exhibited reduced sensitivity to ABA-induced senescence but little change to jasmonic acid- or ethylene-induced senescence. RPK1 thus mediates ABA-induced leaf senescence as well as age-induced leaf senescence. Conditional overexpression of RPK1 at the mature stage clearly accelerated senescence and cell death, whereas induction of RPK1 at an early developmental stage retarded growth without triggering senescence symptoms. Therefore, RPK1 plays different roles at different stages of development. Consistently, exogenously applied ABA affected leaf senescence in old leaves but not in young leaves. The results, together, showed that membrane-bound RPK1 functions in ABA-dependent leaf senescence. Furthermore, the effect of ABA and ABA-inducible RPK1 on leaf senescence is dependent on the age of the plant, which in part explains the mechanism of functional diversification of ABA action.
Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutação , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de TempoRESUMO
This paper presents a new biomimetic soft finger joint with elastic ligaments for enhanced restoration capability. A hemisphere-shaped flexible finger joint is designed to secure omnidirectional restoration and guarantee a reliable recovery function. Joint design comparative studies for enhancing restoration are presented with joint mechanisms and potential energy formulation analyses. A ligament design that enables an efficient grasping mode switch from power to pinch grasping is also considered. By using the presented joint and ligament, a tendon-driven robot hand is assembled. For the finger's biomimetic features, the hand provides a reasonably secure grasping operation for various complicated objects with minimum controls. The impact test and grasping experiments confirmed that the fabricated hand has the right amount of passive compliance in all directions as designed, and the restoration to the original state is also stably performed.
Assuntos
Articulações dos Dedos , Mãos , Fenômenos Mecânicos , Robótica , Tendões , HumanosRESUMO
Existing human lung-mimicking requirements in various radiology application fields have led to the development of many different phantoms. However, most are static apparatus designed for equipment calibration. Although there are a few dynamic phantoms that generate predefined motions, they have complicated mechanisms that hamper even simple modifications for various lung illness simulations. As a result, existing dynamic phantoms in which a target can be embedded normally generate rectilinear target motions with limited displacement. Nevertheless, volume changes in the human lungs during normal respiration are significant, and targets inside the lungs move along various random paths depending on their location, stiffness, and the properties of the surrounding tissues. In the present work, a novel phantom design is introduced and tested. The phantom mimics the human lung motion and its deformation is initiated by a diaphragm movement. The phantom provides a fairly large deformation and the capability to adjust target motion paths. The presented device has a simple mechanism that can be easily modified to generate various pulmonary diseases. To produce a large deformation by diaphragm compressive motion, polyurethane cubic blocks constitute the deformable part of the lung phantom and a tumor made with silicone is inserted in the structure. The assembled lung part is housed within an acrylic case that is filled with water. The phantom system consists of acrylic, plastic, and low-density polyurethane to minimize artifacts when it undergoes computed tomography (CT) scans. The lung part is organized with various density polyurethane blocks, making it possible to produce nonlinear motion paths of the tumor. The lung part is deformed by a silicon film that is driven by external hydraulic pressure. A finite element method simulation and two-dimensional target motion tests were performed to verify phantom performance. The functionality of the proposed phantom system was confirmed in a series of CT images.
Assuntos
Pulmão/fisiologia , Fenômenos Mecânicos , Movimento , Imagens de Fantasmas , Radiologia/instrumentação , Respiração , Humanos , Pulmão/diagnóstico por imagemRESUMO
Artificial muscle actuators made from commercial nylon fishing lines have been recently introduced and shown as a new type of actuator with high performance. However, the actuators also exhibit significant nonlinearities, which make them difficult to control, especially in precise trajectory-tracking applications. In this article, we present a nonlinear mathematical model of a conductive supercoiled polymer (SCP) actuator driven by Joule heating for model-based feedback controls. Our efforts include modeling of the hysteresis behavior of the actuator. Based on nonlinear modeling, we design a sliding mode controller for SCP actuator-driven manipulators. The system with proposed control law is proven to be asymptotically stable using the Lyapunov theory. The control performance of the proposed method is evaluated experimentally and compared with that of a proportional-integral-derivative (PID) controller through one-degree-of-freedom SCP actuator-driven manipulators. Experimental results show that the proposed controller's performance is superior to that of a PID controller, such as the tracking errors are nearly 10 times smaller compared with those of a PID controller, and it is more robust to external disturbances such as sensor noise and actuator modeling error.
Assuntos
Desenho de Equipamento/métodos , Robótica/instrumentação , Condutividade Elétrica , Retroalimentação , Dinâmica não Linear , PolímerosRESUMO
Reactive oxygen species (ROS) are inevitable by-products of aerobic metabolic processes, causing non-specific oxidative damage and also acting as second messengers. Superoxide is a short-lived ROS that functions in various cellular responses, including aging and cell death. However, it is unclear as to how superoxide brings about age-dependent cell death and senescence. Here, we show that the accumulation and signaling of superoxide are mediated by three Arabidopsis proteins-RPK1, CaM4, and RbohF-which trigger subsequent cellular events leading to age-dependent cell death. We demonstrate that the NADPH oxidase RbohF is responsible for RPK1-mediated transient accumulation of superoxide, SIRK kinase induction, and cell death, all of which are positively regulated by CaM4. RPK1 physically interacts with and phosphorylates CaM4, which, in turn, interacts with RbohF. Overall, we demonstrate how the protein trio governs the superoxide accumulation and signaling at the cell surface to control senescence and cell death.
Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Morte Celular , Senescência Celular , NADPH Oxidases/metabolismo , Proteínas Quinases/genética , Superóxidos/metabolismo , Arabidopsis , Calmodulina/genética , NADPH Oxidases/genética , Ligação Proteica , Proteínas Quinases/metabolismoRESUMO
The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca(2+), whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca(2+) gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases.
RESUMO
The antifungal activity of hevein-like proteins has been associated with their chitin-binding activities. Pn-AMP1 and Pn-AMP2, two hevein homologues from Pharbitis nil, show in vitro antifungal activities against both chitin and non-chitin containing fungi. Purified Pn-AMPs retained antifungal activities only under non-reducing conditions. When Pn-AMP2 cDNA was constitutively expressed in tomato (Lycopersicon esculentum) plants under the control of CaMV35S promoter, the transgenic plants showed enhanced resistance against both the non-chitinous fungus Phytophthora capsici, and the chitin-containing fungus Fusarium oxysporum. Thus, the chitin component in the fungal cell wall is not an absolute requirement for Pn-AMP's antifungal activities. These results when considered together suggest that Pn-AMPs have the potential for developing transgenic plants resistant to a wide range of phytopathogenic fungi.