Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Europace ; 20(11): 1866-1871, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462311

RESUMO

Aims: The development of communicating modular cardiac rhythm management systems relies on effective intrabody communication between a subcutaneous implantable cardioverter-defibrillator (S-ICD) and a leadless pacemaker (LP), using conducted communication. Communication success is affected by the LP and S-ICD orientation. This study is designed to evaluate the orientation of the LP and S-ICD in canine subjects and measure success and threshold of intrabody communication. To gain more human insights, we will explore device orientation in LP and S-ICD patients. Methods and results: Canine subjects implanted with a prototype S-ICD and LP (both Boston Scientific, MA, USA) with anterior-posterior fluoroscopy images were included in this analysis. For comparison, a retrospective analysis of human S-ICD and LP patients was performed. The angle of the long axis of the LP towards the vertical axis of 0°, and distance between the coil and LP were measured. Twenty-three canine subjects were analysed. Median angle of the LP was 29° and median distance of the S-ICD coil to LP was 0.8 cm. All canine subjects had successful communication. The median communicating threshold was 2.5 V. In the human retrospective analysis, 72 LP patients and 100 S-ICD patients were included. The mean angle of the LP was 56° and the median distance between the S-ICD coil and LP was 4.6 cm. Conclusion: Despite the less favourable LP orientation in canine subjects, all communication attempts were successful. In the human subjects, we observed a greater and in theory more favourable LP angle towards the communication vector. These data suggests suitability of human anatomy for conductive intrabody communication.


Assuntos
Estimulação Cardíaca Artificial/métodos , Desfibriladores Implantáveis , Cardioversão Elétrica , Ajuste de Prótese/métodos , Animais , Arritmias Cardíacas/terapia , Bases de Dados Factuais , Cães , Cardioversão Elétrica/instrumentação , Cardioversão Elétrica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Animais , Avaliação de Resultados em Cuidados de Saúde , Radiografia Torácica/métodos
2.
Heart Rhythm ; 19(5): 837-846, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35066181

RESUMO

BACKGROUND: Subcutaneous implantable cardioverter-defibrillators (S-ICDs) and leadless pacemakers (LPs) are intended to diminish transvenous lead-related complications. However, S-ICDs do not deliver antibradycardia pacing or antitachycardia pacing, and currently, there is no commercially available coordinated leadless option for patients with defibrillator and (expected) pacing needs. OBJECTIVE: We evaluated the performance, safety, and potential replacement strategies of a novel modular cardiac rhythm management (mCRM) system, a wirelessly communicating antitachycardia pacing-enabled LP and S-ICD in a preclinical model. METHODS: LP implantation was attempted in 68 canine subjects, and in 38 an S-ICD was implanted as well. Animals were evaluated serially up to 18 months. At all evaluations, communication thresholds (CTs) between the devices, LP electrical parameters, and system-related complications were assessed. Different replacement strategies were tested. RESULTS: The LP was successfully implanted in 67 of 68 (98.5%) and the concomitant S-ICD in 38 of 38 (100%). mCRM communication was successful in 1022 of 1024 evaluations (99.8%). The mean CT was 2.2 ± 0.7 V at implantation and stable afterward (18 months: 1.8 ± 0.7 V). In multivariable analysis, larger LP-to-S-ICD angle and dorsal posture were associated with higher CTs. At implantation, the mean pacing capture threshold, impedance, and R-wave amplitude were 0.3 ± 0.1 V, 898.4 ± 198.9 Ω, and 26.4 ± 8.2 mV. The mean pacing capture threshold remained stable and impedance and R-wave amplitudes were within acceptable ranges throughout (0.7 ± 0.4 V, 619.1 ± 90.6 Ω, and 20.1 ± 8.4 mV at 18 months). Different replacement strategies seem feasible. CONCLUSION: This first mCRM system demonstrated excellent performance up to 18 months in a preclinical model.


Assuntos
Desfibriladores Implantáveis , Marca-Passo Artificial , Animais , Estimulação Cardíaca Artificial , Cães , Humanos , Resultado do Tratamento
3.
J Biomech ; 36(4): 605-8, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12600351

RESUMO

Fracture, or tear, toughness of soft tissues can be computed from the work of fracture divided by the area of new crack surface. For soft tissues without significant plastic deformation, total work, which can be measured experimentally, is composed of the sum of fracture and viscoelastic work. In order to deduce fracture work, a method is needed to estimate viscoelastic work. Two different methods (Ph.D. Dissertation, University of Minnesota, 2000; J. Mater. Sci.: Mater. Med. 12 (2001) 327) have been proposed to estimate viscoelastic work in a fracture test of a soft tissue. The relative merits of these methods are unknown because the true viscoelastic work in an experiment is unknown. In order to characterize the accuracy of these methods, a theoretical model of crack propagation of viscoelastic soft tissue in a tensile test is presented, from which the exact viscoelastic work is calculated. The material is assumed to obey the standard linear solid model. The "exact" solution for the viscoelastic work during the fracture is computed from the model and compared with the work estimated by the two methods. It was found that both methods tend to underestimate the viscoelastic work done, and thus overestimate the fracture work and fracture toughness, although the errors were greater with the Fedewa method. It was further found that low displacement rates can give rise to a "snap" effect, where rapid crack growth can cause a disproportionate amount of viscoelastic energy to be dissipated during unloading. This modeling approach may be useful in evaluating other experimental methods of soft tissue fracture.


Assuntos
Tecido Conjuntivo/lesões , Tecido Conjuntivo/fisiopatologia , Fraturas de Estresse/fisiopatologia , Teste de Materiais/métodos , Modelos Biológicos , Simulação por Computador , Elasticidade , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Resistência à Tração , Viscosidade
4.
J Mater Sci Mater Med ; 13(9): 823-8, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15348545

RESUMO

Fracture toughness of cartilage and cartilage replacement tissues is important in injury and disease. For example, cartilage is thought to weaken before it fibrillates in the disease osteoarthritis. Since both loading rate and proteoglycan content affect viscoelastic properties, they may both affect fracture toughness of cartilage and cartilage analogs. In this study, fracture toughness of tissue grown in chondrocyte culture was measured as a function of loading rate and proteoglycan digestion. Control tissue and tissue digested with chondroitinase ABC (cABC) to remove proteoglycans were tested at displacement rates of 0.1 and 0.5 mm/sec. Displacement rate had no effect on fracture toughness for either control or digested tissue. Proteoglycan digestion reduced tissue thickness by 30% and when evaluated on a material basis increased fracture toughness. There was no interaction between digestion and loading rate. When the fracture toughness was normalized to collagen content, which removed the effect of tissue shrinkage, there was no effect of proteoglycan digestion on fracture toughness. These data suggest that proteoglycans do not contribute to tissue toughness, other than by reducing thickness and increasing collagen density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA