Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Microbiol Biotechnol ; 103(18): 7553-7566, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31332485

RESUMO

In spite of intensive exploitation of aspergilli for the industrial production of carbohydrases, little is known about hydrolytic enzymes of fungi from the section Cervini. Novel glycoside hydrolases Bgh12A and Xgh12B from Aspergillus cervinus represent examples of divergent activities within one enzyme family and belong to the GH12 phylogenetic subgroup I (endo-(1,4)-ß-glucanases) and II (endo-xyloglucanases), respectively. The bgh12A and xgh12B genes were identified in the unsequenced genome of A. cervinus using primers designed for conservative regions of the corresponding subgroups and a genome walking approach. The recombinant enzymes were heterologously produced in Pichia pastoris, purified, and characterized. Bgh12A was an endo-(1,4)-ß-glucanase (EC 3.2.1.4) hydrolyzing the unbranched soluble ß-(1,4)-glucans and mixed linkage ß-(1,3;1,4)-D-glucans. Bgh12A exhibited maximum activity on barley ß-glucan (BBG), which amounted to 614 ± 30 U/mg of protein. The final products of BBG and lichenan hydrolysis were glucose, cellobiose, cellotriose, 4-O-ß-laminaribiosyl-glucose, and a range of higher mixed-linkage gluco-oligosaccharides. In contrast, the activity of endo-xyloglucanase Xgh12B (EC 3.2.1.151) was restricted to xyloglucan, with 542 ± 39 U/mg protein. The enzyme cleaved the (1,4)-ß-glycosidic bonds of the xyloglucan backbone at the unsubstituted glucose residues finally generating cellotetraose-based hepta-, octa, and nona-oligosaccharides. Bgh12A and Xgh12B had maximal activity at 55 °C, pH 5.0. At these conditions, the half-time of Xgh12B inactivation was 158 min, whereas the half-life of Bgh12A was 5 min. Recombinant P. pastoris strains produced up to 106 U/L of the target enzymes with at least 75% of recombinant protein in the total extracellular proteins. The Bgh12A and Xgh12B sequences show 43% identity. Strict differences in substrate specificity of Bgh12A and Xgh12B were in congruence with the presence of subgroup-specific structural loops and substrate-binding aromatic residues in the catalytic cleft of the enzymes. Individual composition of aromatic residues in the catalytic cleft defined variability in substrate selectivity within GH12 subgroups I and II.


Assuntos
Aspergillus/enzimologia , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas Fúngicas/genética , Genoma Fúngico , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xilanos/metabolismo , beta-Glucanas/metabolismo
2.
Biol Chem ; 399(3): 235-252, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29140786

RESUMO

We describe the selection of Anticalins against a common tumour surface antigen, human Hsp70, using functional display on live Escherichia coli cells as fusion with a truncated EspP autotransporter. While found intracellularly in normal cells, Hsp70 is frequently exposed in a membrane-bound state on the surface of tumour cells and, even more pronounced, in metastases or after radiochemotherapy. Employing a recombinant Hsp70 fragment comprising residues 383-548 as the target, Anticalins were selected from a naïve bacterial library. The Anticalin with the highest affinity (KD=13 nm), as determined towards recombinant full-length Hsp70 by real-time surface plasmon resonance analysis, was improved to KD=510 pm by doped random mutagenesis and another cycle of E. coli surface display, followed by rational combination of mutations. This Anticalin, which recognises a linear peptide epitope located in the interdomain linker of Hsp70, was demonstrated to specifically bind Hsp70 in its membrane-associated form in immunofluorescence microscopy and via flow cytometry using the FaDu cell line, which is positive for surface Hsp70. The radiolabelled and PASylated Anticalin revealed specific tumour accumulation in xenograft mice using positron emission tomography (PET) imaging. Furthermore, after enzymatic coupling to the protein toxin gelonin, the Anticalin showed potent cytotoxicity on FaDu cells in vitro.


Assuntos
Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Propriedades de Superfície
3.
BMC Microbiol ; 18(1): 56, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884129

RESUMO

BACKGROUND: The genus Bacillus includes a great variety of species with potential applications in biotechnology. While species such as B. subtilis or B. licheniformis are well-known and used to provide various products at industrial scale, other Bacillus species are less characterized and are not yet used in commercial processes. One reason for this is the fact that genetic manipulation of new isolates is usually complicated with conventional techniques which have to be adapted to each new strain. Even in well-established strains, the available transformation protocols often suffer from low efficiencies. RESULTS: In this paper, we provide a new broad host range E. coli/Bacillus shuttle vector, named pBACOV (Bacillus conjugation vector), that can be efficiently transferred to various Bacillus species using a single protocol. A variant of pBACOV carrying the sfGFP gene was successfully transferred to eight different species from the genus Bacillus and to one Paenibacillus species using triparental conjugation ("transmating"). This was achieved using a single protocol and worked for nine out of eleven tested acceptor species. The transmating procedure was used to test expression of the heterologous reporter gene sfGFP under control of the PaprE-promoter from B. subtilis in several Bacillus species in parallel. Expression of sfGFP was found in eight out of nine transmates. For several of the tested species, this is the first report of a method for genetic modification and heterologous gene expression. The expression level, analyzed by measuring the relative sfGFP-fluorescence normalized to the cell density of the cultures, was highest in B. mojavensis. CONCLUSIONS: The new shuttle vector pBACOV can be transferred to many different Bacillus and Paenibacillus species using a simple and efficient transmating protocol. It is a versatile tool facilitating the application of recombinant DNA technology in new as well as established strains, or selection of an ideal host for heterologous gene expression from a multitude of strains. This paves the way for the genetic modification and biotechnological exploitation of the broad diversity of species of Bacillus and related genera as well as different strains from these species.


Assuntos
Bacillus/genética , Conjugação Genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Genes Reporter , Engenharia Genética , Especificidade de Hospedeiro , Paenibacillus/genética , Regiões Promotoras Genéticas
4.
Appl Microbiol Biotechnol ; 102(23): 10147-10159, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30259100

RESUMO

Due to their high secretion capacity, Gram-positive bacteria from the genus Bacillus are important expression hosts for the high-yield production of enzymes in industrial biotechnology; however, to date, strains from only few Bacillus species are used for enzyme production at industrial scale. Herein, we introduce Paenibacillus polymyxa DSM 292, a member of a different genus, as a novel host for secretory protein production. The model gene cel8A from Clostridium thermocellum was chosen as an easily detectable reporter gene with industrial relevance to demonstrate heterologous expression and secretion in P. polymyxa. The yield of the secreted cellulase Cel8A protein was increased by optimizing the expression medium and testing several promoter sequences in the expression plasmid pBACOV. Quantitative mass spectrometry was used to analyze the secretome in order to identify promising new promoter sequences from the P. polymyxa genome itself. The most abundantly secreted host proteins were identified, and the promoters regulating the expression of their corresponding genes were selected. Eleven promoter sequences were cloned and tested, including well-characterized promoters from Bacillus subtilis and Bacillus megaterium. The best result was achieved with the promoter for the hypothetical protein PPOLYM_03468 from P. polymyxa. In combination with the optimized expression medium, this promoter enabled the production of 5475 U/l of Cel8A, which represents a 6.2-fold increase compared to the reference promoter PaprE. The set of promoters described in this work covers a broad range of promoter strengths useful for heterologous expression in the new host P. polymyxa.


Assuntos
Celulase/biossíntese , Clostridium thermocellum/genética , Paenibacillus polymyxa/genética , Regiões Promotoras Genéticas , Bacillus megaterium/genética , Bacillus subtilis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Celulase/genética , Clostridium thermocellum/enzimologia , Meios de Cultura/química , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes Reporter , Vetores Genéticos , Microbiologia Industrial , Paenibacillus polymyxa/enzimologia
5.
Anal Bioanal Chem ; 409(30): 7169-7181, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29026979

RESUMO

The rising importance of accurately detecting oligosaccharides in biomass hydrolyzates or as ingredients in food, such as in beverages and infant milk products, demands for the availability of tools to sensitively analyze the broad range of available oligosaccharides. Over the last decades, HPAEC-PAD has been developed into one of the major technologies for this task and represents a popular alternative to state-of-the-art LC-MS oligosaccharide analysis. This work presents the first comprehensive study which gives an overview of the separation of 38 analytes as well as enzymatic hydrolyzates of six different polysaccharides focusing on oligosaccharides. The high sensitivity of the PAD comes at cost of its stability due to recession of the gold electrode. By an in-depth analysis of the sensitivity drop over time for 35 analytes, including xylo- (XOS), arabinoxylo- (AXOS), laminari- (LOS), manno- (MOS), glucomanno- (GMOS), and cellooligosaccharides (COS), we developed an analyte-specific one-phase decay model for this effect over time. Using this model resulted in significantly improved data normalization when using an internal standard. Our results thereby allow a quantification approach which takes the inevitable and analyte-specific PAD response drop into account. Graphical abstract HPAEC-PAD analysis of oligosaccharides and determination of PAD response drop leading to an improved data normalization.


Assuntos
Cromatografia/métodos , Oligossacarídeos/química , Fracionamento Químico , Sensibilidade e Especificidade
6.
Appl Microbiol Biotechnol ; 101(14): 5653-5666, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28477154

RESUMO

A xyloglucanase of the GH74 family was identified in the thermophilic fungus strain Myceliophthora thermophila VKPM F-244, and its gene sequence was optimized for cloning and expression in Pichia pastoris. The recombinant xyloglucanase MtXgh74 exhibited the highest activity toward tamarind seed xyloglucan with a K M value of 0.51 ± 0.06 mg/mL. The activities on barley ß-glucan and carboxymethylcellulose were about 4 and 2%, respectively, compared to xyloglucan. Maximum xyloglucanase activity was observed at 70-75 °C and pH 6.5. After pre-incubation at 50 °C, pH 6.0 for 3 h, the enzyme retained 100% of its activity. The half-life of MtXgh74 at 60 °C, pH 6.0 was 40 min. In P. pastoris, MtXgh74 was produced in glycosylated form. The enzyme production in a 1 L bioreactor resulted in a yield of 118 U/mL or 5.3 g/L after 51 h fermentation. Kinetic studies of the hydrolysis product formation suggest that MtXgh74 has an endo-processive mode of action. The final products were the standard xyloglucan building blocks XXXG, XXLG, XLXG, and XLLG. Additionally, MtXgh74 hydrolyzed various linkages within the xyloglucan building blocks XXXG, XXLG, and XLXG (except XLLG) producing diverse low molecular weight oligosaccharides which may be identified by MALDI-TOF as XG, XX, XXG/GXX/XGX, XXX, LG, LX/XL, XLX/XXL, LLG, GXXXG, GXLLG, XLLGX. The unique combination of different activities within one enzyme along with its high thermostability and specificity toward xyloglucan makes MtXgh74 a promising candidate enzyme for industrial applications.


Assuntos
Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Pichia/genética , Sordariales/enzimologia , Carboximetilcelulose Sódica/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Glucanos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sordariales/genética , Especificidade por Substrato , Temperatura , Xilanos/metabolismo , beta-Glucanas/metabolismo
7.
Chembiochem ; 15(8): 1096-100, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24782039

RESUMO

Bioconjugates, such as antibody-drug conjugates, have gained recent attention because of their increasing use in therapeutic and diagnostic applications. Commonly used conjugation reactions based upon chemoselective reagents exhibit a number of drawbacks: most of these reactions lack regio- and stereospecificity, thus resulting in loss of protein functionality due to random modifications. Enzymes provide an obvious solution to this problem, but the intrinsic (natural) substrate specificities of existing enzymes pose severe limitations to the kind of modifications that can be introduced. Here we describe the application of the novel trypsin variant trypsiligase for site-specific modification of the C terminus of a Fab antibody fragment via a stable peptide bond. The suitability of this designed biocatalyst was demonstrated by coupling the Her2-specific Fab to artificial functionalities of either therapeutic (PEG) or diagnostic (fluorescein) relevance. In both cases we obtained homogeneously modified Fab products bearing the artificial functionality exclusively at the desired position.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Tripsina/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Biocatálise , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Tripsina/química
8.
J Biol Chem ; 285(26): 20006-14, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20410293

RESUMO

Galactitol 2-dehydrogenase (GatDH) belongs to the protein superfamily of short-chain dehydrogenases. As an enzyme capable of the stereo- and regioselective modification of carbohydrates, it exhibits a high potential for application in biotechnology as a biocatalyst. We have determined the crystal structure of the binary form of GatDH in complex with its cofactor NAD(H) and of the ternary form in complex with NAD(H) and three different substrates. The active form of GatDH constitutes a homo-tetramer with two magnesium-ion binding sites each formed by two opposing C termini. The catalytic tetrad is formed by Asn(116), Ser(144), Tyr(159), and Lys(163). GatDH structurally aligns well with related members of the short-chain dehydrogenase family. The substrate binding pocket can be divided into two parts of different size and polarity. In the smaller part, the side chains of amino acids Ser(144), Ser(146), and Asn(151) are important determinants for the binding specificity and the orientation of (pro-) chiral compounds. The larger part of the pocket is elongated and flanked by polar and non-polar residues, enabling a rather broad substrate spectrum. The presented structures provide valuable information for a rational design of this enzyme to improve its stability against pH, temperature, or solvent concentration and to optimize product yield in bioreactors.


Assuntos
Proteínas de Bactérias/química , Rhodobacter sphaeroides/enzimologia , Desidrogenase do Álcool de Açúcar/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Metabolismo dos Carboidratos , Domínio Catalítico , Cristalização , Cinética , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , NAD/química , NAD/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rhodobacter sphaeroides/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Difração de Raios X
9.
Microbiol Resour Announc ; 9(11)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165383

RESUMO

Paenibacillus polymyxa DSM 292 was originally isolated from soil in 1947 due to its ability to produce antibiotics. The low proteolytic properties of strain DSM 292 warrant its examination as a host for heterologous protein production. Here, we report the draft genome sequence of DSM 292 as established by Illumina MiSeq paired-end sequencing.

10.
Biotechnol Biofuels ; 11: 238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202433

RESUMO

BACKGROUND: Increasing the efficiency of enzymatic biomass degradation is crucial for a more economically feasible conversion of abundantly available plant feedstock. Synergistic effects between the enzymes deployed in the hydrolysis of various hemicelluloses have been demonstrated, which can reduce process costs by lowering the amount of enzyme required for the reaction. Xyloglucan is the only major hemicellulose for which no such effects have been described yet. RESULTS: We report the beneficial combination of two enzymes for the degradation of the hemicellulose xyloglucan. The addition of ß-galactosidase Bga2B from Clostridium stercorarium to an in vitro hydrolysis reaction of a model xyloglucan substrate increased the enzymatic efficiency of endoglucanase Cel9D from Clostridium thermocellum to up to 22-fold. Furthermore, the total amount of enzyme required for high hydrolysis yields was lowered by nearly 80%. Increased yields were also observed when using a natural complex substrate-tamarind kernel powder. CONCLUSION: The findings of this study may improve the valorization of feedstocks containing high-xyloglucan amounts. The combination of the endoglucanase Cel9D and the ß-galactosidase Bga2B can be used to efficiently produce the heptasaccharide XXXG. The exploitation of one specific oligosaccharide may open up possibilities for the use as a prebiotic or platform chemical in additional reactions.

11.
Genome Announc ; 6(6)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439041

RESUMO

The cellulolytic bacterium Herbivorax saccincola strain GGR1, which represents the type strain of this species, was isolated from the in vivo enriched cellulose-binding community of a lab scale thermophilic biogas reactor. Here, we report the complete genome sequence of H. saccincola GGR1T, the first isolated member of the genus Herbivorax.

12.
Sci Rep ; 7(1): 11178, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894250

RESUMO

Enzymes that cleave polysaccharides in lignocellulose, i. e., cellulases, xylanases, and accessory enzymes, play crucial roles in the natural decomposition of plant-derived biomass and its efficient and sustainable processing into biofuels or other bulk chemicals. The analysis of open reading frame cthe_2195 from the thermophilic, cellulolytic anaerobe Clostridium thermocellum (also known as 'Ruminiclostridium thermocellum') suggested that it encoded a cellulosomal protein comprising a dockerin-I module, a carbohydrate-binding module, and a module of previously unknown function. The biochemical characterisation upon recombinant expression in Escherichia coli revealed that the protein is a thermostable endoxylanase, named Xyn141E with an optimal pH of 6.0-6.5 and a temperature optimum of 67-75 °C. The substrate spectrum of Xyn141E resembles that of GH10 xylanases, because of its side activities on carboxymethyl cellulose, barley ß-glucan, and mannan. Conversely, the product spectrum of Xyn141E acting on arabinoxylan is similar to those of GH11, as established by HPAEC-PAD analysis. Xyn141E is weakly related (20.7% amino acid sequence identity) to the founding member of the recently established GH family 141 and is the first xylanase in this new family of biomass-degrading enzymes.


Assuntos
Clostridium thermocellum/enzimologia , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Clonagem Molecular , Biologia Computacional , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Polissacarídeos/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
13.
MAbs ; 6(2): 354-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492291

RESUMO

We report on the preparation of a new type of immunotoxin via in vitro ligation of the αHer2 antigen binding fragment (Fab) of the clinically-validated antibody trastuzumab to the plant toxin gelonin, employing catalysis by the bacterial enzyme sortase A (SrtA). The αHer2 Fab was fused with the extended SrtA recognition motif LPET↓GLEH 6 at the C-terminus of its heavy chain, thereby preventing interference with antigen binding, while the toxin was equipped with a Gly 2 sequence at its N-terminus, distant to the catalytically active site in the C-terminal region. Site-specific in vitro transpeptidation led to a novel antibody-toxin conjugate wherein gelonin had effectively replaced the Fc region of a conventional (monomerized) immunoglobulin. After optimization of reaction conditions and incubation time, the resulting Fab-Gelonin ligation product was purified to homogeneity in a two-step procedure by means of Strep-Tactin affinity chromatography--utilizing the Strep-tag II appended to gelonin--and size exclusion chromatography. Binding activity of the immunotoxin for the Her2 ectodomain was indistinguishable from the unligated Fab as measured by real-time surface plasmon resonance spectroscopy. Specific cytotoxic potency of Fab-Gelonin was demonstrated against two Her2-positive cell lines, resulting in EC 50 values of ~1 nM or lower, indicating a 1000-fold enhanced cell-killing activity compared with gelonin itself. Thus, our strategy provides a convenient route to the modular construction of functional immunotoxins from Fabs of established tumor-specific antibodies with gelonin or related proteotoxins, also avoiding the elevated biosafety levels that would be mandatory for the direct biotechnological preparation of corresponding fusion proteins.


Assuntos
Adenocarcinoma/terapia , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Neoplasias da Mama/terapia , Cisteína Endopeptidases/metabolismo , Imunoterapia Ativa/métodos , Neoplasias Ovarianas/terapia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Adenocarcinoma/imunologia , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias da Mama/imunologia , Catálise , Linhagem Celular Tumoral , Cromatografia de Afinidade , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Terapia de Alvo Molecular , Neoplasias Ovarianas/imunologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA