Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 142(1): 39-51, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603013

RESUMO

An in vivo screen was performed in search of chemicals capable of enhancing neuron formation in the hippocampus of adult mice. Eight of 1000 small molecules tested enhanced neuron formation in the subgranular zone of the dentate gyrus. Among these was an aminopropyl carbazole, designated P7C3, endowed with favorable pharmacological properties. In vivo studies gave evidence that P7C3 exerts its proneurogenic activity by protecting newborn neurons from apoptosis. Mice missing the gene encoding neuronal PAS domain protein 3 (NPAS3) are devoid of hippocampal neurogenesis and display malformation and electrophysiological dysfunction of the dentate gyrus. Prolonged administration of P7C3 to npas3(-/-) mice corrected these deficits by normalizing levels of apoptosis of newborn hippocampal neurons. Prolonged administration of P7C3 to aged rats also enhanced neurogenesis in the dentate gyrus, impeded neuron death, and preserved cognitive capacity as a function of terminal aging. PAPERCLIP:


Assuntos
Carbazóis/farmacologia , Avaliação Pré-Clínica de Medicamentos , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Fármacos Neuroprotetores/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carbazóis/química , Cognição/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Fármacos Neuroprotetores/química , Ratos
2.
Annu Rev Biochem ; 78: 1017-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19489738

RESUMO

Cholesterol 24-hydroxylase is a highly conserved cytochrome P450 that is responsible for the majority of cholesterol turnover in the vertebrate central nervous system. The enzyme is expressed in neurons, including hippocampal and cortical neurons that are important for learning and memory formation. Disruption of the cholesterol 24-hydroxylase gene in the mouse reduces both cholesterol turnover and synthesis in the brain but does not alter steady-state levels of cholesterol in the tissue. The decline in synthesis reduces the flow of metabolites through the cholesterol biosynthetic pathway, of which one, geranylgeraniol diphosphate, is required for learning in the whole animal and for synaptic plasticity in vitro. This review focuses on how the link between cholesterol metabolism and higher-order brain function was experimentally established.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Encéfalo/citologia , Colesterol 24-Hidroxilase , Regulação Enzimológica da Expressão Gênica , Hipocampo/metabolismo , Humanos , Aprendizagem , Neurônios/metabolismo , Esteroide Hidroxilases/química , Esteroide Hidroxilases/genética
3.
Biochim Biophys Acta ; 1831(8): 1335-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23680781

RESUMO

Bile acids play multiple roles in the physiology of vertebrates; they facilitate lipid absorption, serve as signaling molecules to control carbohydrate and lipid metabolism, and provide a disposal route for cholesterol. Unexpectedly, the α-methylacyl-CoA racemase (Amacr) deficient mice, which are unable to complete the peroxisomal cleavage of C27-precursors to the mature C24-bile acids, are physiologically asymptomatic when maintained on a standard laboratory diet. The aim of this study was to uncover the underlying adaptive mechanism with special reference to cholesterol and bile acid metabolism that allows these mice to have a normal life span. Intestinal cholesterol absorption in Amacr-/- mice is decreased resulting in a 2-fold increase in daily cholesterol excretion. Also fecal excretion of bile acids (mainly C27-sterols) is enhanced 3-fold. However, the body cholesterol pool remains unchanged, although Amacr-deficiency accelerates hepatic sterol synthesis 5-fold. Changes in lipoprotein profiles are mainly due to decreased phospholipid transfer protein activity. Thus Amacr-deficient mice provide a unique example of metabolic regulation, which allows them to have a normal lifespan in spite of the disruption of a major metabolic pathway. This metabolic adjustment can be mainly explained by setting cholesterol and bile acid metabolism to a new balanced level in the Amacr-deficient mouse.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Racemases e Epimerases/metabolismo , Animais , Ácidos e Sais Biliares/genética , Colesterol/genética , Longevidade/fisiologia , Camundongos , Camundongos Knockout , Racemases e Epimerases/genética
4.
Proc Natl Acad Sci U S A ; 105(32): 11394-9, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18685105

RESUMO

Mice deficient in cholesterol 24-hydroxylase exhibit reduced rates of cholesterol synthesis and other non-sterol isoprenoids that arise from the mevalonate pathway. These metabolic abnormalities, in turn, impair learning in the whole animal and hippocampal long-term potentiation (LTP) in vitro. Here, we report pharmacogenetic experiments in hippocampal slices from wild-type and mutant mice that characterize the dependence of LTP on the non-sterol isoprenoid, geranylgeraniol. Addition of geranylgeraniol to slices from 24-hydroxylase knockout mice restores LTP to wild-type levels; however, farnesol, a chemically related compound, does not substitute for geranylgeraniol nor does another animal model of impaired LTP (apolipoprotein E deficiency) respond to this isoprenoid. The requirement for geranylgeraniol is independent of acute protein isoprenylation as judged in experiments employing cell-permeable inhibitors of protein farnesyl transferase and geranylgeranyl transferase enzymes and in mutant mice hypomorphic for geranylgeranyltransferase II. Time course studies show that geranylgeraniol acts within 5 min and at 2 different times during the establishment of LTP: just before electrical stimulation and approximately 15 min thereafter. Localized delivery of geranylgeraniol to the dendritic trees of CA1 hippocampal neurons via the recording electrode is sufficient to restore LTP in slices from 24-hydroxylase knockout mice. We conclude that geranylgeraniol acts specifically and quickly to affect LTP in the Schaffer collaterals of the hippocampus.


Assuntos
Colesterol/biossíntese , Diterpenos/farmacologia , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Esteroide Hidroxilases/genética , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Colesterol 24-Hidroxilase , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Diterpenos/metabolismo , Farneseno Álcool/metabolismo , Farneseno Álcool/farmacologia , Hipocampo/patologia , Hiperlipoproteinemia Tipo III/genética , Hiperlipoproteinemia Tipo III/metabolismo , Potenciação de Longa Duração/genética , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Knockout , Prenilação/efeitos dos fármacos , Prenilação/genética , Fatores de Tempo , Transferases
5.
Sci Signal ; 8(384): ra67, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26152694

RESUMO

Alzheimer's disease (AD) is a currently incurable neurodegenerative disorder and is the most common form of dementia in people over the age of 65 years. The predominant genetic risk factor for AD is the ε4 allele encoding apolipoprotein E (ApoE4). The secreted glycoprotein Reelin enhances synaptic plasticity by binding to the multifunctional ApoE receptors apolipoprotein E receptor 2 (Apoer2) and very low density lipoprotein receptor (Vldlr). We have previously shown that the presence of ApoE4 renders neurons unresponsive to Reelin by impairing the recycling of the receptors, thereby decreasing its protective effects against amyloid ß (Aß) oligomer-induced synaptic toxicity in vitro. We showed that when Reelin was knocked out in adult mice, these mice behaved normally without overt learning or memory deficits. However, they were strikingly sensitive to amyloid-induced synaptic suppression and had profound memory and learning disabilities with very low amounts of amyloid deposition. Our findings highlight the physiological importance of Reelin in protecting the brain against Aß-induced synaptic dysfunction and memory impairment.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Western Blotting , Encéfalo/fisiopatologia , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Humanos , Imuno-Histoquímica , Proteínas Relacionadas a Receptor de LDL/metabolismo , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas do Tecido Nervoso/genética , Receptores de LDL/metabolismo , Proteína Reelina , Serina Endopeptidases/genética
6.
Proc Natl Acad Sci U S A ; 103(10): 3869-74, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16505352

RESUMO

The mevalonate pathway produces cholesterol and nonsterol isoprenoids, such as geranylgeraniol. In the brain, a fraction of cholesterol is metabolized in neurons by the enzyme cholesterol 24-hydroxylase, and this depletion activates the mevalonate pathway. Brains from mice lacking 24-hydroxylase excrete cholesterol more slowly, and the tissue compensates by suppressing the mevalonate pathway. Here we report that this suppression causes a defect in learning. 24-Hydroxylase knockout mice exhibit severe deficiencies in spatial, associative, and motor learning, and in hippocampal long-term potentiation (LTP). Acute treatment of wild-type hippocampal slices with an inhibitor of the mevalonate pathway (a statin) also impairs LTP. The effects of statin treatment and genetic elimination of 24-hydroxylase on LTP are reversed by a 20-min treatment with geranylgeraniol but not by cholesterol. We conclude that cholesterol turnover in brain activates the mevalonate pathway and that a constant production of geranylgeraniol in a small subset of neurons is required for LTP and learning.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Diterpenos/metabolismo , Aprendizagem/fisiologia , Animais , Colesterol 24-Hidroxilase , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esteroide Hidroxilases/deficiência , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Transmissão Sináptica
7.
J Biol Chem ; 280(13): 12611-20, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15632186

RESUMO

Alpha-methylacyl-CoA racemase (Amacr) catalyzes the racemization of alpha-methyl-branched CoA esters. Sequence comparisons have shown that this enzyme is a member of the family III CoA transferases. The mammalian Amacr is involved in bile acid synthesis and branched-chain fatty acid degradation. In human, mutated variants of Amacr have been shown to be associated with disease states. Amino acid sequence alignment of Amacrs and its homologues from various species revealed 26 conserved protic residues, assumed to be potential candidates as catalytic residues. Amacr from Mycobacterium tuberculosis (MCR) was taken as a representative of the racemases. To determine their importance for efficient catalysis, each of these 26 protic residues of MCR was mutated into an alanine, respectively, and the mutated variants were overexpressed in Escherichia coli. It was found that four variants (R91A, H126A, D156A, and E241A) were properly folded but had much decreased catalytic efficiency. Apparently, Arg91, His126, Asp156, and Glu241 are important catalytic residues of MCR. The importance of these residues for catalysis can be rationalized by the 1.8 A resolution crystal structure of MCR, which shows that the catalytic site is at the interface between the large and small domain of two different subunits of the dimeric enzyme. This crystal structure is the first structure of a complete enzyme of the bile acid synthesis pathway. It shows that MCR has unique structural features, not seen in the structures of the sequence related formyl-CoA transferases, suggesting that the family III CoA transferases can be subdivided in at least two classes, being racemases and CoA transferases.


Assuntos
Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Racemases e Epimerases/química , Racemases e Epimerases/genética , Alanina/química , Sequência de Aminoácidos , Animais , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação , Catálise , Dicroísmo Circular , Clonagem Molecular , Cristalografia por Raios X , Dimerização , Escherichia coli/metabolismo , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Raios Ultravioleta
8.
J Biol Chem ; 278(25): 22980-8, 2003 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-12686551

RESUMO

Most cholesterol turnover takes place in the liver and involves the conversion of cholesterol into soluble and readily excreted bile acids. The synthesis of bile acids is limited to the liver, but several enzymes in the bile acid biosynthetic pathway are expressed in extra-hepatic tissues and there also may contribute to cholesterol turnover. An example of the latter type of enzyme is cholesterol 24-hydroxylase, a cytochrome P450 (CYP46A1) that is expressed at 100-fold higher levels in the brain than in the liver. Cholesterol 24-hydroxylase catalyzes the synthesis of the oxysterol 24(S)-hydroxycholesterol. To assess the relative contribution of the 24-hydroxylation pathway to cholesterol turnover, we performed balance studies in mice lacking the cholesterol 24-hydroxylase gene (Cyp46a1-/- mice). Parameters of hepatic cholesterol and bile acid metabolism in the mutant mice remained unchanged relative to wild type controls. In contrast to the liver, the synthesis of new cholesterol was reduced by approximately 40% in the brain, despite steady-state levels of cholesterol being similar in the knockout mice. These data suggest that the synthesis of new cholesterol and the secretion of 24(S)-hydroxycholesterol are closely coupled and that at least 40% of cholesterol turnover in the brain is dependent on the action of cholesterol 24-hydroxylase. We conclude that cholesterol 24-hydroxylase constitutes a major tissue-specific pathway for cholesterol turnover in the brain.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Colesterol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Esteroide Hidroxilases/deficiência , Esteroide Hidroxilases/genética , Alelos , Animais , Colesterol 24-Hidroxilase , Colesterol na Dieta , Desenvolvimento Embrionário e Fetal , Regulação Enzimológica da Expressão Gênica/fisiologia , Cinética , Fígado/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Mapeamento por Restrição , Esteroide Hidroxilases/metabolismo , Transcrição Gênica , beta-Galactosidase/metabolismo
9.
Hum Mol Genet ; 13(9): 955-65, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15016763

RESUMO

alpha-Methylacyl-CoA racemase (Amacr) deficiency in humans leads to sensory motor neuronal and liver abnormalities. The disorder is recessively inherited and caused by mutations in the AMACR gene, which encodes Amacr, an enzyme presumed to be essential for bile acid synthesis and to participate in the degradation of methyl-branched fatty acids. To generate a model to study the pathophysiology in Amacr deficiency we inactivated the mouse Amacr gene. As per human Amacr deficiency, the Amacr(-/-) mice showed accumulation (44-fold) of C27 bile acid precursors and decreased (over 50%) primary (C24) bile acids in bile, serum and liver, however the Amacr(-/-) mice were clinically symptomless. Real-time quantitative PCR analysis showed that, among other responses, the level of mRNA for peroxisomal multifunctional enzyme type 1 (pMFE-1) was increased 3-fold in Amacr(-/-) mice. This enzyme can be placed, together with CYP3A11 and CYP46A1, to make an Amacr-independent pathway for the generation of C24 bile acids. Exposure of Amacr(-/-) mice to a diet supplemented with phytol, a source for branched-chain fatty acids, triggered the development of a disease state with liver manifestations, redefining the physiological significance of Amacr. Amacr is indispensable for the detoxification of dietary methyl-branched lipids and, although it contributes normally to bile acid synthesis from cholesterol, the putative pMFE-1-mediated cholesterol degradation can provide for generation of bile acids, allowing survival without Amacr. Based upon our mouse model, we propose elimination of phytol from the diet of patients suffering from Amacr deficiency.


Assuntos
Ácidos e Sais Biliares/biossíntese , Deficiências Nutricionais/etiologia , Lipídeos/farmacologia , Racemases e Epimerases/deficiência , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Ácidos e Sais Biliares/metabolismo , Peso Corporal/genética , Colesterol/sangue , Colesterol/metabolismo , Colesterol 24-Hidroxilase , Clofibrato/farmacologia , Citocromo P-450 CYP3A , Deficiências Nutricionais/tratamento farmacológico , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hipolipemiantes/farmacologia , Rim/enzimologia , Lipídeos/sangue , Lipídeos/química , Fígado/enzimologia , Fígado/patologia , Masculino , Proteínas de Membrana , Camundongos , Camundongos Mutantes , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Fitol/farmacologia , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Vitamina K/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA