Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cancer Ther ; 20(2): 250-262, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310762

RESUMO

Primary treatment for estrogen receptor-positive (ER+) breast cancer is endocrine therapy. However, substantial evidence indicates a continued role for ER signaling in tumor progression. Selective estrogen receptor degraders (SERD), such as fulvestrant, induce effective ER signaling inhibition, although clinical studies with fulvestrant report insufficient blockade of ER signaling, possibly due to suboptimal pharmaceutical properties. Furthermore, activating mutations in the ER have emerged as a resistance mechanism to current endocrine therapies. New oral SERDs with improved drug properties are under clinical investigation, but the biological profile that could translate to improved therapeutic benefit remains unclear. Here, we describe the discovery of SAR439859, a novel, orally bioavailable SERD with potent antagonist and degradation activities against both wild-type and mutant Y537S ER. Driven by its fluoropropyl pyrrolidinyl side chain, SAR439859 has demonstrated broader and superior ER antagonist and degrader activities across a large panel of ER+ cells, compared with other SERDs characterized by a cinnamic acid side chain, including improved inhibition of ER signaling and tumor cell growth. Similarly, in vivo treatment with SAR439859 demonstrated significant tumor regression in ER+ breast cancer models, including MCF7-ESR1 wild-type and mutant-Y537S mouse tumors, and HCI013, a patient-derived tamoxifen-resistant xenograft tumor. These findings indicate that SAR439859 may provide therapeutic benefit to patients with ER+ breast cancer, including those who have resistance to endocrine therapy with both wild-type and mutant ER.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptores de Estrogênio/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
2.
Cell Chem Biol ; 25(6): 705-717.e11, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29628435

RESUMO

Activating KRAS mutations are major oncogenic drivers in multiple tumor types. Synthetic lethal screens have previously been used to identify targets critical for the survival of KRAS mutant cells, but their application to drug discovery has proven challenging, possibly due in part to a failure of monolayer cultures to model tumor biology. Here, we report the results of a high-throughput synthetic lethal screen for small molecules that selectively inhibit the growth of KRAS mutant cell lines in soft agar. Chemoproteomic profiling identifies the target of the most KRAS-selective chemical series as dihydroorotate dehydrogenase (DHODH). DHODH inhibition is shown to perturb multiple metabolic pathways. In vivo preclinical studies demonstrate strong antitumor activity upon DHODH inhibition in a pancreatic tumor xenograft model.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirimidinas/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Camundongos , Camundongos SCID , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Células Tumorais Cultivadas
3.
J Proteome Res ; 5(3): 599-610, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16512675

RESUMO

Functional proteomics approaches that comprehensively evaluate the biological activities of human cDNAs may provide novel insights into disease pathogenesis. To systematically investigate the functional activity of cDNAs that have been implicated in breast carcinogenesis, we generated a collection of cDNAs relevant to breast cancer, the Breast Cancer 1000 (BC1000), and conducted screens to identify proteins that induce phenotypic changes that resemble events which occur during tumor initiation and progression. Genes were selected for this set using bioinformatics and data mining tools that identify genes associated with breast cancer. Greater than 1000 cDNAs were assembled and sequence verified with high-throughput recombination-based cloning. To our knowledge, the BC1000 represents the first publicly available sequence-validated human disease gene collection. The functional activity of a subset of the BC1000 collection was evaluated in cell-based assays that monitor changes in cell proliferation, migration, and morphogenesis in MCF-10A mammary epithelial cells expressing a variant of ErbB2 that can be inducibly activated through dimerization. Using this approach, we identified many cDNAs, encoding diverse classes of cellular proteins, that displayed activity in one or more of the assays, thus providing insights into a large set of cellular proteins capable of inducing functional alterations associated with breast cancer development.


Assuntos
Neoplasias da Mama/genética , DNA Complementar/isolamento & purificação , Proteômica , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica , Humanos , Transdução de Sinais/genética
4.
Proc Natl Acad Sci U S A ; 99(5): 2654-9, 2002 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11880620

RESUMO

The completion of the human genome project and the development of high-throughput approaches herald a dramatic acceleration in the pace of biological research. One of the most compelling next steps will be learning the functional roles of all proteins. Achievement of this goal depends in part on the rapid expression and isolation of proteins at large scale. We exploited recombinational cloning to facilitate the development of methods for the high-throughput purification of human proteins. cDNAs were introduced into a master vector from which they could be rapidly transferred into a variety of protein expression vectors for further analysis. A test set of 32 sequence-verified human cDNAs of various sizes and activities was moved into four different expression vectors encoding different affinity-purification tags. By means of an automatable 2-hr protein purification procedure, all 128 proteins were purified and subsequently characterized for yield, purity, and steps at which losses occurred. Under denaturing conditions when the His6 tag was used, 84% of samples were purified. Under nondenaturing conditions, both the glutathione S-transferase and maltose-binding protein tags were successful in 81% of samples. The developed methods were applied to a larger set of 336 randomly selected cDNAs. Sixty percent of these proteins were successfully purified under denaturing conditions and 82% of these under nondenaturing conditions. A relational database, FLEXProt, was built to compare properties of proteins that were successfully purified and proteins that were not. We observed that some domains in the Pfam database were found almost exclusively in proteins that were successfully purified and thus may have predictive character.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Escherichia coli , Proteínas de Transporte de Monossacarídeos , Proteínas/isolamento & purificação , Proteoma/isolamento & purificação , Proteínas de Transporte/genética , Bases de Dados de Proteínas , Escherichia coli , Expressão Gênica , Engenharia Genética , Glutationa Transferase/genética , Humanos , Proteínas Ligantes de Maltose , Desnaturação Proteica , Proteínas/genética , Proteoma/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
5.
Proc Natl Acad Sci U S A ; 101(5): 1257-62, 2004 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-14739340

RESUMO

MCF10A mammary epithelial cells form growth-arrested structures when cultured in three-dimensional basement membrane gels. Activation of the receptor tyrosine kinase ErbB2 induces formation of proliferative structures that share properties with noninvasive early stage lesions. We conducted a genetic screen to identify cDNAs that can cooperate with ErbB2 to induce migration in these cells, with the hypothesis that they would represent candidate "second hits" in the development of invasive breast carcinomas. We found that expression of transforming growth factor (TGF)beta1 and TGFbeta3 in cells expressing activated ErbB2 induces migration in transwell chambers and invasive behavior in both basement membrane cultures and invasion chambers. The ability of ErbB2 to cooperate with TGFbeta correlated with sustained, elevated activation of extracellular signal-regulated kinase (Erk)-mitogen-activated protein kinase. Pharmacological reduction of Erk activity inhibited the cooperative effect of TGFbeta and ErbB2 on migration and expression of activated Erk kinase was sufficient to cooperate with TGFbeta to induce migration and invasion, suggesting that sustained Erk activation is critical for ErbB2/TGFbeta cooperation. In addition, we show that costimulation of ErbB2 and TGFbeta induces autocrine secretion of factors that are sufficient to induce migration, but not invasion, by means of both epidermal growth factor receptor-dependent and -independent processes. These results support the role of TGFbeta as a pro-invasion factor in the progression of breast cancers with activated ErbB2 and suggest that activation of the Erk and epidermal growth factor receptor pathways are key in mediating these events.


Assuntos
Neoplasias da Mama/patologia , Receptor ErbB-2/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Movimento Celular , Células Epiteliais/patologia , Feminino , Humanos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Invasividade Neoplásica , Células Tumorais Cultivadas
6.
Genome Res ; 14(10B): 2076-82, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15489329

RESUMO

Large-scale functional genomics studies for malaria vaccine and drug development will depend on the generation of molecular tools to study protein expression. We examined the feasibility of a high-throughput cloning approach using the Gateway system to create a large set of expression clones encoding Plasmodium falciparum single-exon genes. Master clones and their ORFs were transferred en masse to multiple expression vectors. Target genes (n = 303) were selected using specific sets of criteria, including stage expression and secondary structure. Upon screening four colonies per capture reaction, we achieved 84% cloning efficiency. The genes were subcloned in parallel into three expression vectors: a DNA vaccine vector and two protein expression vectors. These transfers yielded a 100% success rate without any observed recombination based on single colony screening. The functional expression of 95 genes was evaluated in mice with DNA vaccine constructs to generate antibody against various stages of the parasite. From these, 19 induced antibody titers against the erythrocytic stages and three against sporozoite stages. We have overcome the potential limitation of producing large P. falciparum clone sets in multiple expression vectors. This approach represents a powerful technique for the production of molecular reagents for genome-wide functional analysis of the P. falciparum genome and will provide for a resource for the malaria resource community distributed through public repositories.


Assuntos
Antígenos de Protozoários/genética , Clonagem Molecular/métodos , Vacinas Antimaláricas/genética , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Recombinação Genética , Animais , Anticorpos Antiprotozoários/sangue , DNA de Protozoário/genética , Genoma de Protozoário , Fígado/parasitologia , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/farmacologia , Camundongos , Plasmídeos/genética , Plasmodium falciparum/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA