Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525380

RESUMO

Inflammatory breast cancer is a highly aggressive form of breast cancer that forms clusters of tumor emboli in dermal lymphatics and readily metastasizes. These cancers express high levels of E-cadherin, the major mediator of adherens junctions, which enhances formation of tumor emboli. Previous studies suggest that E-cadherin promotes cancer when the balance between apical and basolateral cadherin complexes is disrupted. Here, we used immunohistochemistry of inflammatory breast cancer patient samples and analysis of cell lines to determine the expression of PLEKHA7, an apical adherens junction protein. We used viral transduction to re-express PLEKHA7 in inflammatory breast cancer cells and examined their aggressiveness in 2D and 3D cultures and in vivo. We determined that PLEKHA7 was deregulated in inflammatory breast cancer, demonstrating improper localization or lost expression in most patient samples and very low expression in cell lines. Re-expressing PLEKHA7 suppressed proliferation, anchorage independent growth, spheroid viability, and tumor growth in vivo. The data indicate that PLEKHA7 is frequently deregulated and acts to suppress inflammatory breast cancer. The data also promote the need for future inquiry into the imbalance between apical and basolateral cadherin complexes as driving forces in inflammatory breast cancer.


Assuntos
Junções Aderentes/metabolismo , Antígenos CD/genética , Caderinas/genética , Proteínas de Transporte/genética , Cateninas/genética , Neoplasias Inflamatórias Mamárias/genética , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/patologia , Animais , Antibióticos Antineoplásicos/farmacologia , Antígenos CD/metabolismo , Células CACO-2 , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Cateninas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias Inflamatórias Mamárias/patologia , Metástase Linfática , Camundongos , Camundongos SCID , Polietilenoglicóis/farmacologia , Transdução de Sinais , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , delta Catenina
2.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272708

RESUMO

The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.


Assuntos
Junções Aderentes/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Interferência de RNA/fisiologia , Animais , Carcinogênese/metabolismo , Linhagem Celular , Proliferação de Células/fisiologia , Neoplasias do Colo/metabolismo , Citoplasma/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
3.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195621

RESUMO

E-cadherin is the core component of epithelial adherens junctions, essential for tissue development, differentiation, and maintenance. It is also fundamental for tissue barrier formation, a critical function of epithelial tissues. The colon or large intestine is lined by an epithelial monolayer that encompasses an E-cadherin-dependent barrier, critical for the homeostasis of the organ. Compromised barriers of the colonic epithelium lead to inflammation, fibrosis, and are commonly observed in colorectal cancer. In addition to its architectural role, E-cadherin is also considered a tumor suppressor in the colon, primarily a result of its opposing function to Wnt signaling, the predominant driver of colon tumorigenesis. Beyond these well-established traditional roles, several studies have portrayed an evolving role of E-cadherin as a signaling epicenter that regulates cell behavior in response to intra- and extra-cellular cues. Intriguingly, these recent findings also reveal tumor-promoting functions of E-cadherin in colon tumorigenesis and new interacting partners, opening future avenues of investigation. In this Review, we focus on these emerging aspects of E-cadherin signaling, and we discuss their implications in colon biology and disease.


Assuntos
Caderinas/química , Caderinas/metabolismo , Colo/metabolismo , Doenças do Colo/metabolismo , Homeostase , Transdução de Sinais , Animais , Colo/microbiologia , Doenças do Colo/microbiologia , Microbioma Gastrointestinal , Humanos
4.
Exp Cell Res ; 358(1): 78-85, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28412244

RESUMO

Cadherins are homophilic adhesion molecules with important functions in cell-cell adhesion, tissue morphogenesis, and cancer. In epithelial cells, E-cadherin accumulates at areas of cell-cell contact, coalesces into macromolecular complexes to form the adherens junctions (AJs), and associates via accessory partners with a subcortical ring of actin to form the apical zonula adherens (ZA). As a master regulator of the epithelial phenotype, E-cadherin is essential for the overall maintenance and homeostasis of polarized epithelial monolayers. Its expression is regulated by a host of genetic and epigenetic mechanisms related to cancer, and its function is modulated by mechanical forces at the junctions, by direct binding and phosphorylation of accessory proteins collectively termed catenins, by endocytosis, recycling and degradation, as well as, by multiple signaling pathways and developmental processes, like the epithelial to mesenchymal transition (EMT). Nuclear signaling mediated by the cadherin associated proteins ß-catenin and p120 promotes growth, migration and pluripotency. Receptor tyrosine kinase, PI3K/AKT, Rho GTPase, and HIPPO signaling, are all regulated by E-cadherin mediated cell-cell adhesion. Finally, the recruitment of the microprocessor complex to the ZA by PLEKHA7, and the subsequent regulation of a small subset of miRNAs provide an additional mechanism by which the state of epithelial cell-cell adhesion affects translation of target genes to maintain the homeostasis of polarized epithelial monolayers. Collectively, the data indicate that loss of E-cadherin function, especially at the ZA, is a common and crucial step in cancer progression.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias/metabolismo , Animais , Células Epiteliais/metabolismo , Humanos
5.
Hepatology ; 64(6): 2118-2134, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27629435

RESUMO

In the liver, the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) regulates bile secretion and other functions at the apical membrane of biliary epithelial cells (i.e., cholangiocytes). CF-related liver disease is a major cause of death in patients with CF. CFTR dysfunction affects innate immune pathways, generating a para-inflammatory status in the liver and other epithelia. This study investigates the mechanisms linking CFTR to toll-like receptor 4 activity. We found that CFTR is associated with a multiprotein complex at the apical membrane of normal mouse cholangiocytes, with proteins that negatively control Rous sarcoma oncogene cellular homolog (Src) activity. In CFTR-defective cholangiocytes, Src tyrosine kinase self-activates and phosphorylates toll-like receptor 4, resulting in activation of nuclear factor kappa-light-chain-enhancer of activated B cells and increased proinflammatory cytokine production in response to endotoxins. This Src/nuclear factor kappa-light-chain-enhancer of activated B cells-dependent inflammatory process attracts inflammatory cells but also generates changes in the apical junctional complex and loss of epithelial barrier function. Inhibition of Src decreased the inflammatory response of CF cholangiocytes to lipopolysaccharide, rescued the junctional defect in vitro, and significantly attenuated endotoxin-induced biliary damage and inflammation in vivo (Cftr knockout mice). CONCLUSION: These findings reveal a novel function of CFTR as a regulator of toll-like receptor 4 responses and cell polarity in biliary epithelial cells; this mechanism is pathogenetic, as shown by the protective effects of Src inhibition in vivo, and may be a novel therapeutic target in CF-related liver disease and other inflammatory cholangiopathies. (Hepatology 2016;64:2118-2134).


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Inflamação/etiologia , Receptor 4 Toll-Like/fisiologia , Quinases da Família src/fisiologia , Animais , Ductos Biliares/citologia , Ductos Biliares/enzimologia , Membrana Celular , Células Cultivadas , Fibrose Cística , Epitélio , Camundongos , Permeabilidade
6.
J Cell Sci ; 126(Pt 15): 3271-7, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23729734

RESUMO

Signaling events mediated by Rho family GTPases orchestrate cytoskeletal dynamics and cell junction formation. The activation of Rho GTPases is tightly regulated by guanine-nucleotide-exchange factors (GEFs). In this study, we identified a novel Rho-specific GEF called TEM4 (tumor endothelial marker 4) that associates with multiple members of the cadherin-catenin complex and with several cytoskeleton-associated proteins. Depending on confluence, TEM4 localized to either actin stress fibers or areas of cell-cell contact. The junctional localization of TEM4 was independent of actin binding. Depletion of endogenous TEM4 by shRNAs impaired Madin-Darby canine kidney (MDCK) and human umbilical vein endothelial cell (HUVEC) cell junctions, disrupted MDCK acini formation in 3D culture and negatively affected endothelial barrier function. Taken together, our findings implicate TEM4 as a novel and crucial junctional Rho GEF that regulates cell junction integrity and epithelial and endothelial cell function.


Assuntos
Adesão Celular/fisiologia , Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Cães , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células Madin Darby de Rim Canino , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais
7.
J Biol Chem ; 288(9): 6640-50, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23335514

RESUMO

Syx is a Rho-specific guanine nucleotide exchange factor (GEF) that localizes at cell-cell junctions and promotes junction stability by activating RhoA and the downstream effector Diaphanous homolog 1 (Dia1). Previously, we identified several molecules, including 14-3-3 proteins, as Syx-interacting partners. In the present study, we show that 14-3-3 isoforms interact with Syx at both its N- and C-terminal regions in a phosphorylation-dependent manner. We identify the protein kinase D-mediated phosphorylation of serine 92 on Syx, and additional phosphorylation at serine 938, as critical sites for 14-3-3 association. Our data indicate that the binding of 14-3-3 proteins inhibits the GEF activity of Syx. Furthermore, we show that phosphorylation-deficient, 14-3-3-uncoupled Syx exhibits increased junctional targeting and increased GEF activity, resulting in the strengthening of the circumferential junctional actin ring in Madin-Darby canine kidney cells. These findings reveal a novel means of regulating junctional Syx localization and function by phosphorylation-induced 14-3-3 binding and further support the importance of Syx function in maintaining stable cell-cell contacts.


Assuntos
Proteínas 14-3-3/metabolismo , Comunicação Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas 14-3-3/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cães , Forminas , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Camundongos , Fosforilação/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
8.
Genes Chromosomes Cancer ; 52(10): 961-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913792

RESUMO

Tyrosine kinases orchestrate key cellular signaling pathways and their dysregulation is often associated with cellular transformation. Several recent cases in which inhibitors of tyrosine kinases have been successfully used as anticancer agents have underscored the importance of this class of proteins in the development of targeted cancer therapies. We have carried out a large-scale loss-of-function analysis of the human tyrosine kinases using RNA interference to identify novel survival factors for breast cancer cells. In addition to kinases with known roles in breast and other cancers, we identified several kinases that were previously unknown to be required for breast cancer cell survival. The most surprising of these was the cytosolic, nonreceptor tyrosine kinase, Bruton's tyrosine kinase (BTK), which has been extensively studied in B cell development. Down regulation of this protein with RNAi or inhibition with pharmacological inhibitors causes apoptosis; overexpression inhibits apoptosis induced by Doxorubicin in breast cancer cells. Our results surprisingly show that BTK is expressed in several breast cancer cell lines and tumors. The predominant form of BTK found in tumor cells is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. This alternate form of BTK is expressed at significantly higher levels in tumorigenic breast cells than in normal breast cells. Since this protein is a survival factor for these cells, it represents both a potential marker and novel therapeutic target for breast cancer.


Assuntos
Apoptose/fisiologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase da Agamaglobulinemia , Sequência de Bases , Mama/química , Neoplasias da Mama/química , Neoplasias da Mama/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Interferência de RNA
9.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853930

RESUMO

Epithelial adherens junctions (AJs) are cell-cell adhesion complexes that are influenced by tissue mechanics, such as those emanating from the extracellular matrix (ECM). Here, we introduce a mechanism whereby epithelial AJs can also regulate the ECM. We show that the AJ component PLEKHA7 regulates levels and activity of the key ECM remodeling components MMP1 and LOX in well-differentiated colon epithelial cells, through the miR-24 and miR-30c miRNAs. PLEKHA7 depletion in epithelial cells results in LOX-dependent ECM remodeling in culture and in the colonic mucosal lamina propria in mice. Furthermore, PLEKHA7-depleted cells exhibit increased migration and invasion rates that are MMP1- and LOX- dependent, and form colonies in 3D cultures that are larger in size and acquire aberrant morphologies in stiffer matrices. These results reveal an AJ-mediated mechanism, through which epithelial cells drive ECM remodeling to modulate their behavior, including acquisition of phenotypes that are hallmarks of conditions such as fibrosis and tumorigenesis.

10.
Tissue Barriers ; 11(2): 2084320, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659464

RESUMO

The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.


Assuntos
Junções Aderentes , Mucosa Bucal , Transdução de Sinais
11.
Mol Biol Cell ; 34(13): ar129, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819702

RESUMO

Adherens junctions are cadherin-based structures critical for cellular architecture. E-cadherin junctions in mature epithelial cell monolayers tether to an apical actomyosin ring to form the zonula adherens (ZA). We have previously shown that the adherens junction protein PLEKHA7 associates with and regulates the function of the core RNA interference (RNAi) component AGO2 specifically at the ZA. However, the mechanism mediating AGO2 recruitment to the ZA remained unexplored. Here, we reveal that this ZA-specific recruitment of AGO2 depends on both the structural and tensile integrity of the actomyosin cytoskeleton. We found that depletion of not only PLEKHA7, but also either of the three PLEKHA7-interacting, LIM-domain family proteins, namely LMO7, LIMCH1, and PDLIM1, results in disruption of actomyosin organization and tension, as well as disruption of AGO2 junctional localization and of its miRNA-binding ability. We also show that AGO2 binds Myosin IIB and that PLEKHA7, LMO7, LIMCH1, and PDLIM1 all disrupt interaction of AGO2 with Myosin IIB at the ZA. These results demonstrate that recruitment of AGO2 to the ZA is sensitive to actomyosin perturbations, introducing the concept of mechanosensitive RNAi machinery, with potential implications in tissue remodeling and in disease.


Assuntos
Actinas , Junções Aderentes , Actinas/metabolismo , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Caderinas/metabolismo , Citocinese , Células Epiteliais/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Humanos
12.
Cells ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36497003

RESUMO

The extracellular matrix (ECM) plays crucial roles in tissue homeostasis. Abnormalities in ECM composition are associated with pathological conditions, such as fibrosis and cancer. These ECM alterations are sensed by the epithelium and can influence its behavior through crosstalk with other mechanosensitive complexes, including the adherens junctions (AJs). We have previously shown that the AJs, through their component PLEKHA7, recruit the RNAi machinery to regulate miRNA levels and function. We have particularly shown that the junctional localization of RNAi components is critical for their function. Here, we investigated whether different ECM substrates can influence the junctional localization of RNAi complexes. To do this, we plated colon epithelial Caco2 cells on four key ECM substrates found in the colon under normal or pathogenic conditions, namely laminin, fibronectin, collagen I, and collagen IV, and we examined the subcellular distribution of PLEKHA7, and of the key RNAi components AGO2 and DROSHA. Fibronectin and collagen I negatively impacted the junctional localization of PLEKHA7, AGO2, and DROSHA when compared to laminin. Furthermore, fibronectin, collagen I, and collagen IV disrupted interactions of AGO2 and DROSHA with their essential partners GW182 and DGCR8, respectively, both at AJs and throughout the cell. Combinations of all substrates with fibronectin also negatively impacted junctional localization of PLEKHA7 and AGO2. Additionally, collagen I triggered accumulation of DROSHA at tri-cellular junctions, while both collagen I and collagen IV resulted in DROSHA accumulation at basal areas of cell-cell contact. Altogether, fibronectin and collagens I and IV, which are elevated in the stroma of fibrotic and cancerous tissues, altered localization patterns and disrupted complex formation of PLEKHA7 and RNAi components. Combined with our prior studies showing that apical junctional localization of the PLEKHA7-RNAi complex is critical for regulating tumor-suppressing miRNAs, this work points to a yet unstudied mechanism that could contribute to epithelial cell transformation.


Assuntos
Laminina , MicroRNAs , Humanos , Laminina/metabolismo , Células CACO-2 , MicroRNAs/genética , Proteínas de Ligação a RNA , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Colágeno , Colo/metabolismo
13.
Front Cell Dev Biol ; 10: 856975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399503

RESUMO

Plekha7 is a key adherens junction component involved in numerous functions in mammalian cells. Plekha7 is the most studied member of the PLEKHA protein family, which includes eight members with diverse functions. However, the evolutionary history of Plekha7 remains unexplored. Here, we outline the phylogeny and identify the origins of this gene and its paralogs. We show that Plekha7, together with Plekha4, Plekha5, and Plekha6, belong to a subfamily that we name PLEKHA4/5/6/7. This subfamily is distinct from the other Plekha proteins, which form two additional separate subfamilies, namely PLEKHA1/2 and PLEKHA3/8. Sequence, phylogenetic, exon-intron organization, and syntenic analyses reveal that the PLEKHA4/5/6/7 subfamily is represented by a single gene in invertebrates, which remained single in the last common ancestor of all chordates and underwent gene duplications distinctly in jawless and jawed vertebrates. In the latter species, a first round of gene duplications gave rise to the Plekha4/7 and Plekha5/6 pairs and a second round to the four extant members of the subfamily. These observations are consistent with the 1R/2R hypothesis of vertebrate genome evolution. Plekha7 and Plekha5 also exist in two copies in ray-finned fishes, due to the Teleostei-specific whole genome duplication. Similarities between the vertebrate Plekha4/5/6/7 members and non-chordate sequences are restricted to their N-terminal PH domains, whereas similarities across the remaining protein molecule are only sporadically found among few invertebrate species and are limited to the coiled-coil and extreme C-terminal ends. The vertebrate Plekha4/5/6/7 proteins contain extensive intrinsically disordered domains, which are topologically and structurally conserved in all chordates, but not in non-chordate invertebrates. In summary, our study sheds light on the origins and evolution of Plekha7 and the PLEKHA4/5/6/7 subfamily and unveils new critical information suitable for future functional studies of this still understudied group of proteins.

14.
Biomed Pharmacother ; 148: 112676, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35149387

RESUMO

Since the discovery of the kahalalide family of marine depsipeptides in 1993, considerable work has been done to develop these compounds as new and biologically distinct anti-cancer agents. Clinical trials and laboratory research have yielded a wealth of data that indicates tolerance of kahalalides in healthy cells and selective activity against diseased cells. Currently, two molecules have attracted the greates level of attention, kahalalide F (KF) and isokahalalide F (isoKF, Irvalec, PM 02734, elisidepsin). Both compounds were originally isolated from the sarcoglossan mollusk Elysia rufescens but due to distinct structural characteristics it has been hypothesized and recently shown that the ultimate origin of the molecules is microbial. The search for their true source has been a subject of considerable research in the anticipation of finding new analogs and a culturable expression system that can produce sufficient material through fermentation to be industrially relevant.


Assuntos
Antineoplásicos , Depsipeptídeos , Neoplasias , Animais , Antineoplásicos/química , Depsipeptídeos/farmacologia , Moluscos/química , Neoplasias/tratamento farmacológico
16.
J Cell Biol ; 220(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464299

RESUMO

Subcellular localization of RNAs has gained attention in recent years as a prevalent phenomenon that influences numerous cellular processes. This is also evident for the large and relatively novel class of long noncoding RNAs (lncRNAs). Because lncRNAs are defined as RNA transcripts >200 nucleotides that do not encode protein, they are themselves the functional units, making their subcellular localization critical to their function. The discovery of tens of thousands of lncRNAs and the cumulative evidence involving them in almost every cellular activity render assessment of their subcellular localization essential to fully understanding their biology. In this review, we summarize current knowledge of lncRNA subcellular localization, factors controlling their localization, emerging themes, including the role of lncRNA isoforms and the involvement of lncRNAs in phase separation bodies, and the implications of lncRNA localization on their function and on cellular behavior. We also discuss gaps in the current knowledge as well as opportunities that these provide for novel avenues of investigation.


Assuntos
Transporte de RNA , RNA Longo não Codificante/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Organelas/genética , Transporte de RNA/genética , RNA Longo não Codificante/genética
17.
Methods Mol Biol ; 2367: 235-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32789778

RESUMO

With the realization that mechanical forces mediate many biological processes and contribute to disease progression, researchers are focusing on developing new methods to understand the role of mechanotransduction in biological systems. Despite recent advances in stretching devices that analyze the effects of mechanical strain in vitro, there are still possibilities to develop new equipment. For example, many of these devices tend be expensive, whereas few have been designed to assess the effects of mechanical strain driven by the extracellular matrix (ECM) to epithelial cell monolayers and to cell-cell adhesion. In this chapter, we introduce a cost-efficient, user-friendly, 3D-printed stretching device that can be used to test the effects of mechanical strain on cultured epithelial cells. Evaluation of the device using speckle-tracking shows homogeneous strain distribution along the horizontal plane of membranes at 2.5% and 5% strains, supporting the reliability of the device. Since cell-cell junctions are mechanosensitive protein complexes, we hereby used this device to examine effects on cell-cell adhesion. For this, we used colon epithelial Caco2 cell monolayers that well-differentiate in culture and form mature adherens junctions. Subjecting Caco2 cells to 2.5% and 5% strain using our device resulted in significant reduction in the localization of the core adherens junction component E-cadherin at areas of cell-cell contact and its increased translocation to the cytoplasm, which in agreement with other methodologies showing that increased ECM-driven strain negatively affects cell-cell adhesion. In summary, we here present a new, cost-effective, homemade device that can be reliably used to examine effects of mechanical strain on epithelial cell monolayers and cell-cell adhesion, in vitro.


Assuntos
Macas , Junções Aderentes , Células CACO-2 , Caderinas , Adesão Celular , Células Epiteliais , Humanos , Mecanotransdução Celular , Impressão Tridimensional , Reprodutibilidade dos Testes
18.
Cell Metab ; 33(12): 2380-2397.e9, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879239

RESUMO

Accelerated glycolysis is the main metabolic change observed in cancer, but the underlying molecular mechanisms and their role in cancer progression remain poorly understood. Here, we show that the deletion of the long noncoding RNA (lncRNA) Neat1 in MMTV-PyVT mice profoundly impairs tumor initiation, growth, and metastasis, specifically switching off the penultimate step of glycolysis. Mechanistically, NEAT1 directly binds and forms a scaffold bridge for the assembly of PGK1/PGAM1/ENO1 complexes and thereby promotes substrate channeling for high and efficient glycolysis. Notably, NEAT1 is upregulated in cancer patients and correlates with high levels of these complexes, and genetic and pharmacological blockade of penultimate glycolysis ablates NEAT1-dependent tumorigenesis. Finally, we demonstrate that Pinin mediates glucose-stimulated nuclear export of NEAT1, through which it exerts isoform-specific and paraspeckle-independent functions. These findings establish a direct role for NEAT1 in regulating tumor metabolism, provide new insights into the Warburg effect, and identify potential targets for therapy.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Camundongos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
Breast Cancer Res ; 11(2): R16, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19298655

RESUMO

INTRODUCTION: Accumulation of fatty acids and neutral lipids in nonadipose tissues is cytotoxic. We recently showed that ERBB2-positive breast cancer cells produce significantly high amounts of fats, because of overexpression of the peroxisome proliferator-activated receptor (PPAR)gamma-binding protein and the nuclear receptor NR1D1 (nuclear receptor subfamily 1, group D, member 1; Rev-erbalpha). These genes upregulate de novo fatty acid synthesis, which is a critical pathway for the energy production and survival of these cells. NR1D1 and PPARgamma-binding protein are functionally related to PPARgamma, a well established positive regulator of adipogenesis and lipid storage. METHODS: The effects of GW9662 and exogenously added palmitate on breast cells (BT474, MDA-MB-361, MCF-7, and human mammary epithelial cells) in monolayer culture were assessed. Mass spectrometric quantitation of fatty acids and fluorescence-based high content microscopy assays of cell growth, apoptosis, triglyceride storage and reactive oxygen species production were used. RESULTS: ERBB2-positive breast cancer cells are more sensitive to inhibition of PPARgamma activity by the antagonist GW9662. PPARgamma inhibition results in increased levels of total fats in the cells, mostly because of increased amounts of palmitic and stearic unsaturated acids. Administration of exogenous palmitate is lethal to ERBB2-positive but not to ERBB2-negative cells. GW9662 exacerbates the effects of palmitate addition on BT474 and MDA-MB-361 cells, but it has no significant effect on MCF-7 and human mammary epithelial cells. Palmitate administration results in a fivefold to tenfold greater increase in fat stores in ERBB2-negative cells compared with ERBB2-positive cells, which suggests that the ERBB2-positive cells have maximized their ability to store fats and that additional palmitate is toxic to these cells. Both PPARgamma inhibition and palmitate administration result in increased reactive oxygen species production in BT474 cells. The cell death that results from this treatment can be counteracted by the antioxidant N-acetyl cysteine. CONCLUSIONS: Our findings indicate that PPARgamma activity enables ERBB2-positive breast cancer cells, which produce high levels of fat, to convert fatty acids to triglycerides, allowing these cells to avert the cell death that results from lipotoxicity. Endogenous palmitate toxicity represents a genetically based property of ERBB2-positive breast cancer that can be exploited for therapeutic intervention.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , PPAR gama/metabolismo , Palmitatos/farmacologia , Receptor ErbB-2/metabolismo , Imunofluorescência , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas/efeitos dos fármacos
20.
Cell Signal ; 20(2): 390-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18054200

RESUMO

Calcium has long been recognized as an important regulator of cell cycle transitions although the mechanisms are largely unknown. A functional genomic screen has identified genes involved in the regulation of early cell cycle progression by calcium. These genes when overexpressed confer the ability to bypass the G1/S arrest induced by Ca(2+)-channel antagonists in mouse fibroblasts. Overexpression of the cystine-glutamate exchanger, xCT, had the greatest ability to evade calcium antagonist-induced cell cycle arrest. xCT carries out the rate limiting step of glutathione synthesis in many cell types and is responsible for the uptake of cystine in most human cancer cell lines. Functional analysis indicates that the cystine uptake activity of xCT overcomes the G1/S arrest induced by Ca(2+)-channel antagonists by bypassing the requirement for calcium signaling. Since cells overexpressing xCT were found to have increased levels and activity of the AP-1 transcription factor in G1, redox stimulation of AP-1 activity accounts for the observed growth of these cells in the presence of calcium channel antagonists. These results suggest that reduced calcium signaling impairs AP-1 activation and that xCT expression may directly affect cell proliferation.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Sinalização do Cálcio , Ciclo Celular , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fase G1/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Nifedipino/farmacologia , Oxirredução/efeitos dos fármacos , Fenótipo , Fase S/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA