Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0177823, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470126

RESUMO

The Bacillus cereus sensu stricto (s.s.) species comprises strains of biovar Thuringiensis (Bt) known for their bioinsecticidal activity, as well as strains with foodborne pathogenic potential. Bt strains are identified (i) based on the production of insecticidal crystal proteins, also known as Bt toxins, or (ii) based on the presence of cry, cyt, and vip genes, which encode Bt toxins. Multiple bioinformatics tools have been developed for the detection of crystal protein-encoding genes based on whole-genome sequencing (WGS) data. However, the performance of these tools is yet to be evaluated using phenotypic data. Thus, the goal of this study was to assess the performance of four bioinformatics tools for the detection of crystal protein-encoding genes. The accuracy of sequence-based identification of Bt was determined in reference to phenotypic microscope-based screening for the production of crystal proteins. A total of 58 diverse B. cereus sensu lato strains isolated from clinical, food, environmental, and commercial biopesticide products underwent WGS. Isolates were examined for crystal protein production using phase contrast microscopy. Crystal protein-encoding genes were detected using BtToxin_Digger, BTyper3, IDOPS (identification of pesticidal sequences), and Cry_processor. Out of 58 isolates, the phenotypic production of crystal proteins was confirmed for 18 isolates. Specificity and sensitivity of Bt identification based on sequences were 0.85 and 0.94 for BtToxin_Digger, 0.97 and 0.89 for BTyper3, 0.95 and 0.94 for IDOPS, and 0.88 and 1.00 for Cry_processor, respectively. Cry_processor predicted crystal protein production with the highest specificity, and BtToxin_Digger and IDOPS predicted crystal protein production with the highest sensitivity. Three out of four tested bioinformatics tools performed well overall, with IDOPS achieving high sensitivity and specificity (>0.90).IMPORTANCEStrains of Bacillus cereus sensu stricto (s.s.) biovar Thuringiensis (Bt) are used as organic biopesticides. Bt is differentiated from the foodborne pathogen Bacillus cereus s.s. by the production of insecticidal crystal proteins. Thus, reliable genomic identification of biovar Thuringiensis is necessary to ensure food safety and facilitate risk assessment. This study assessed the accuracy of whole-genome sequencing (WGS)-based identification of Bt compared to phenotypic microscopy-based screening for crystal protein production. Multiple bioinformatics tools were compared to assess their performance in predicting crystal protein production. Among them, identification of pesticidal sequences performed best overall at WGS-based Bt identification.


Assuntos
Bacillus thuringiensis , Inseticidas , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacillus cereus/genética , Toxinas de Bacillus thuringiensis , Genoma Bacteriano , Genômica , Inseticidas/metabolismo , Proteínas de Bactérias/química
2.
J Dairy Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851576

RESUMO

This study addresses the limited tools available for assessing food safety risks from cytotoxic Bacillus cereus group strains in contaminated food. We quantified the growth, in skim milk broth, of 17 cytotoxic B. cereus strains across 6 phylogenetic groups with various virulence gene profiles. The strains did not grow in HTST milk at 4 or 6°C. At 10°C, 15 strains exhibited growth; at 8°C, one strain grew; and all strains grew at temperatures ≥ 14°C. Using growth data from 16 strains, we developed linear secondary growth models and an exposure assessment model. This model, simulating a 5-stage HTST milk supply chain and up to 35 d of consumer storage with an initial contamination of 100 cfu/mL, estimated that 2.81 ± 0.66% and 4.13 ± 2.53% of milk containers would surpass 105 cfu/mL of B. cereus by d 21 and 35, respectively. A sensitivity analysis identified the initial physiological state of cells (Q0) as the most influential variable affecting predictions for specific isolates. What-if scenarios indicated that increases in mean and variability of consumer storage temperatures significantly affected the predicted B. cereus concentrations in milk. This model serves as an initial tool for risk-based food safety decision making regarding low-level B. cereus contamination.

3.
Food Microbiol ; 109: 104145, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309427

RESUMO

A cross-sectional study was conducted to investigate the prevalence and risk factors for contamination of Ethiopian dairy products with Campylobacter. A total of 912 dairy food samples were collected from establishments of 682 study participants that were interviewed. Samples were tested for Campylobacter by following the ISO 10272-1:2017 standard and PCR confirmation. Campylobacter was detected in 11% of tested food samples and all detected Campylobacter were C. jejuni. The highest prevalence of C. jejuni was found in raw milk (16%), followed by pasteurized milk (9%) and cottage cheese (2%) (P < 0.001). Using warm water and soap for cleaning cow udders and teats on farms reduced the likelihood of detecting Campylobacter in milk (AOR = 0.3, P = 0.023). Filtering milk with a cloth, using a plastic filter (AOR = 0.065, P = 0.005), and storing milk in an aluminum container (AOR = 0.23, P = 0.027) reduced the likelihood of detecting Campylobacter in milk at the collection facilities. In contrast, Campylobacter detection was significantly more likely in milk collected at collection centers with concrete floors (AOR = 5.2, P = 0.004). The odds of detecting Campylobacter in milk were 17 times greater (AOR = 17, P = 0.007) in milk processing facilities that did not calibrate a pasteurizer on an annual basis. Finally, having a separate refrigerator for milk storage reduced the odds of detecting Campylobacter in retail (AOR = 0.29, P = 0.021).


Assuntos
Campylobacter jejuni , Campylobacter , Bovinos , Animais , Feminino , Leite , Campylobacter/genética , Etiópia/epidemiologia , Prevalência , Estações do Ano , Estudos Transversais , Fatores de Risco , Microbiologia de Alimentos
4.
Food Microbiol ; 116: 104349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689423

RESUMO

Poultry is the primary source of Campylobacter infections and severe campylobacteriosis cases are treated with macrolides and fluoroquinolones. However, these drugs are less effective against antimicrobial-resistant strains. Here, we investigated the prevalence of phenotypic antimicrobial resistance and associated resistance genetic determinants in Campylobacter isolates collected from human clinical (N = 123) and meat (N = 80) sources in Pennsylvania in 2017 and 2018. Our goal was to assess potential differences in the prevalence of antimicrobial resistance in Campylobacter isolated from human and poultry meat sources in Pennsylvania and to assess the accuracy of predicting antimicrobial resistance phenotypes based on resistance genotypes. We whole genome sequenced isolates and identified genetic resistance determinants using the National Antimicrobial Resistance Monitoring System Campylobacter AMR workflow v2.0 in GalaxyTrakr. Phenotypic antimicrobial susceptibility testing was carried out using the E-Test and Sensititre CAMPYCMV methods for human clinical and poultry meat isolates, respectively, and the results were interpreted using the EUCAST epidemiological cutoff values. The 193 isolates were represented by 85 MLST sequence types and 23 clonal complexes, suggesting high genetic diversity. Resistance to erythromycin was confirmed in 6% human and 4% meat isolates. Prevalence of ciprofloxacin resistance was significantly higher in human isolates as compared to meat isolates. A good concordance was observed between phenotypic resistance and the presence of the corresponding known resistance genetic determinants.


Assuntos
Infecções por Campylobacter , Campylobacter , Humanos , Animais , Ciprofloxacina/farmacologia , Campylobacter/genética , Pennsylvania/epidemiologia , Prevalência , Tipagem de Sequências Multilocus , Aves Domésticas , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/veterinária , Antibacterianos/farmacologia , Carne
5.
Emerg Infect Dis ; 28(9): 1877-1881, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997597

RESUMO

Whole-genome sequencing (WGS) is being applied increasingly to Bacillus cereus group species; however, misinterpretation of WGS results may have severe consequences. We report 3 cases, 1 of which was an outbreak, in which misinterpretation of B. cereus group WGS results hindered communication within public health and industrial laboratories.


Assuntos
Bacillus anthracis , Bacillus , Bacillus cereus/genética , Laboratórios
6.
Appl Environ Microbiol ; 88(13): e0040522, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35730937

RESUMO

Bacillus cereus sensu lato (s.l.) includes foodborne pathogens, as well as beneficial microorganisms, such as bioinsecticides. Some of the beneficial and commercially used B. cereus s.l. strains have been shown to carry enterotoxin genes, the products of which can cause toxicoinfection in humans. Furthermore, recent epidemiological reports indicated that some bioinsecticidal strains have been linked with foodborne illness outbreaks. This demonstrates the need for improved surveillance of B. cereus s.l., which includes characterization of isolates' virulence capacity. However, the prediction of virulence capacity of B. cereus s.l. strains is challenging. Genetic screening for enterotoxin gene presence has proven to be insufficient for accurate discrimination between virulent and avirulent strains, given that nearly all B. cereus s.l. strains carry at least one enterotoxin gene. Furthermore, complex regulatory networks governing the expression of enterotoxins, and potential synergistic interactions between enterotoxins and other virulence factors make the prediction of toxicoinfection based on isolates' genome sequences challenging. In this review, we summarize and synthesize the current understanding of the regulation of enterotoxins associated with the B. cereus s.l. toxicoinfection and identify gaps in the knowledge that need to be addressed to facilitate identification of genetic markers predictive of cytotoxicity and toxicoinfection.


Assuntos
Enterotoxinas , Doenças Transmitidas por Alimentos , Bacillus cereus/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Microbiologia de Alimentos , Humanos , Virulência , Fatores de Virulência/genética
7.
Appl Environ Microbiol ; 88(6): e0230221, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35225691

RESUMO

Bacillus cereus group isolates (n = 85) were screened for phenotypic resistance to 18 antibiotics using broth microdilution and CLSI M45 Bacillus spp. breakpoints. The susceptibility to 9 out of 18 antibiotics was also tested using disk diffusion method and M100 Staphylococcus spp. breakpoints when available. Overall, a high prevalence of susceptibility to clinically relevant antibiotics was identified using broth microdilution. For most tested antibiotics, a poor correlation was found between zones of inhibition and MICs. Using the broth microdilution results as a reference for comparison, we identified high error rates and low categorical agreement between results produced using disk diffusion and broth microdilution for the seven tested antibiotics with defined breakpoints. This suggests that disk diffusion should be avoided for AST of B. cereus group isolates. Further, we detected antimicrobial resistance genes with ARIBA and ABRIcate to calculate the sensitivity and specificity for predicting phenotypic resistance determined using broth microdilution based on the presence of detected antimicrobial resistance genes (ARGs). ARGs with poor sensitivity and high specificity included rph (rifampicin, 0%, 93%), mph (erythromycin, 0%, 99%), bla1 (penicillin, 29%, 100%), and blaZ (penicillin, 56%, 100%). Compared to penicillin, bla1 and blaZ had lower specificity for the prediction of ampicillin resistance. Overall, none of the ARGs had both high sensitivity and specificity, suggesting the need for further study of the mechanisms underlying phenotypic antimicrobial resistance in the B. cereus group. IMPORTANCE Bacillus cereus group includes human pathogens that can cause severe infections requiring antibiotic treatment. Screening of environmental and food isolates for antimicrobial resistance can provide insight into what antibiotics may be more effective therapeutic options based on the lower prevalence of resistance. Currently, the comparison of antimicrobial susceptibility testing results using the disk diffusion method is complicated by the fact that many previous studies have used Staphylococcus spp. breakpoints to interpret their results. In this study, we compared the results of disk diffusion interpreted using the Staphylococcus spp. breakpoints against the results of broth microdilution interpreted using Bacillus spp. breakpoints. We demonstrated that the disk diffusion method does not produce reliable results for B. cereus group isolates and should therefore be avoided. This study also provides new insight into poor associations between the presence of antimicrobial resistance genes and resistance phenotypes for the B. cereus group.


Assuntos
Anti-Infecciosos , Bacillus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bacillus cereus/genética , Farmacorresistência Bacteriana/genética , Genótipo , Testes de Sensibilidade Microbiana , Fenótipo
8.
Crit Rev Food Sci Nutr ; 62(28): 7677-7702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33939559

RESUMO

The Bacillus cereus group, also known as B. cereus sensu lato (s.l.), is a species complex that contains numerous closely related lineages, which vary in their ability to cause illness in humans and animals. The classification of B. cereus s.l. isolates into species-level taxonomic units is thus essential for informing public health and food safety efforts. However, taxonomic classification of these organisms is challenging. Numerous-often conflicting-taxonomic changes to the group have been proposed over the past two decades, making it difficult to remain up to date. In this review, we discuss the major nomenclatural changes that have accumulated in the B. cereus s.l. taxonomic space prior to 2020, particularly in the genomic sequencing era, and outline the resulting problems. We discuss several contemporary taxonomic frameworks as applied to B. cereus s.l., including (i) phenotypic, (ii) genomic, and (iii) hybrid nomenclatural frameworks, and we discuss the advantages and disadvantages of each. We offer suggestions as to how readers can avoid B. cereus s.l. taxonomic ambiguities, regardless of the nomenclatural framework(s) they choose to employ. Finally, we discuss future directions and open problems in the B. cereus s.l. taxonomic realm, including those that cannot be solved by genomic approaches alone.


Assuntos
Bacillus , Animais , Bacillus cereus/genética , Genômica/métodos , Humanos , Filogenia
9.
Food Microbiol ; 105: 104025, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473978

RESUMO

Plant protection products based on Bacillus thuringiensis have been used to fight agricultural pests for decades and are the world's most frequently applied biopesticide. However, there is growing concern that B. thuringiensis residues in food may occasionally cause diarrheal illness in humans. This has recently sparked a plethora of research activities and vivid discussions across the scientific community, competent authorities, and the public. To support this discussion, we provide a structured overview of the current knowledge on the role of B. thuringiensis as a causative agent of foodborne infections in humans and pinpoint research gaps that need to be addressed for improved risk assessment. We review (i) recent taxonomic changes in the B. cereus group; (ii) the role of B. thuringiensis in transforming agrosystems; and (iii) key considerations for assessing the hazard potential of B. thuringiensis strains detected in foods. We conclude that (i) the taxonomy of the B. cereus group is collapsing, (ii) B. thuringiensis based biopesticides play a key role in realizing the UN's sustainable development goals, and (iii) risk assessment needs to move from taxonomy-driven considerations to strain-specific identification of virulence and pathogenicity traits We also provide an overview of relevant risk-related data for commonly used biopesticide strains.


Assuntos
Bacillus thuringiensis , Doenças Transmitidas por Alimentos , Bacillus cereus , Agentes de Controle Biológico , Humanos , Percepção
10.
Artigo em Inglês | MEDLINE | ID: mdl-34550062

RESUMO

Six thermo-acidophilic, spore-forming strains were isolated from a variety of juice products and were characterized genetically and phenotypically. According to 16S rRNA and rpoB gene phylogenetic analyses and average nucleotide identity comparisons against the species demarcation cutoff at <95 %, these six strains were determined to represent three novel species of Alicyclobacillus. The isolates were designated FSL-W10-0018T, FSL-W10-0037, FSL-W10-0048, VF-FSL-W10-0049T, FSL-W10-0057 and FSL-W10-0059T. All six isolates were Gram-positive, motile, rod shaped, contained menaquinone 7 as the major respiratory quinone and had ω-cyclohexane C17 : 0 as a major fatty acid. They were all able to grow aerobically in a range of acidic and moderate thermal conditions. Only isolates FSL-W10-0048 and VF-FSL-W10-0049T were able to produce guaiacol. The following names are proposed for the three new species: Alicyclobacillus mali sp. nov. (type strain FSL-W10-0018T =DSM 112016T=NCIMB 15266T); Alicyclobacillus suci sp. nov (VF-FSL-W10-0049T=DSM 112017T=NCIMB 15265T); and Alicyclobacillus fructus sp. nov. (FSL-W10-0059T=DSM 112018T=NCIMB 15264T).


Assuntos
Alicyclobacillus , Alicyclobacillus/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Bebidas , DNA Bacteriano/genética , Ácidos Graxos/química , Frutas , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Int Dairy J ; 109: 104762, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33013007

RESUMO

Food safety is a significant barrier to social and economic development throughout the world, particularly in developing countries. Here, we reviewed the prevalence of major bacterial foodborne pathogens (Salmonella spp., Listeria monocytogenes, Escherichia coli O157:H7 and Campylobacter spp.) in the rapidly growing Ethiopian dairy supply-chain. We identified 15, 9, 5 and 0 studies that had reported the prevalence of Salmonella spp., L. monocytogenes, E. coli O157:H7, and Campylobacter spp. in dairy foods, respectively. The studies reviewed reported a median prevalence of Salmonella, L. monocytogenes, and E. coli O157:H7 of 6, 9 and 10%, respectively, in raw cow milk in Ethiopia, indicating a concerning occurrence of bacterial foodborne pathogens in raw milk. Implementation of good hygiene and production practices and assessment of interventions targeting the reduction of contamination in the dairy supply chain is needed to inform coordinated efforts focused on improvement of dairy food safety in Ethiopia.

12.
BMC Evol Biol ; 19(1): 132, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226931

RESUMO

BACKGROUND: The emergence of antimicrobial-resistant (AMR) strains of the important human and animal pathogen Salmonella enterica poses a growing threat to public health. Here, we studied the genome-wide evolution of 90 S. enterica AMR isolates, representing one host adapted serotype (S. Dublin) and two broad host range serotypes (S. Newport and S. Typhimurium). RESULTS: AMR S. Typhimurium had a large effective population size, a large and diverse genome, AMR profiles with high diversity, and frequent positive selection and homologous recombination. AMR S. Newport showed a relatively low level of diversity and a relatively clonal population structure. AMR S. Dublin showed evidence for a recent population bottleneck, and the genomes were characterized by a larger number of genes and gene ontology terms specifically absent from this serotype and a significantly higher number of pseudogenes as compared to other two serotypes. Approximately 50% of accessory genes, including specific AMR and putative prophage genes, were significantly over- or under-represented in a given serotype. Approximately 65% of the core genes showed phylogenetic clustering by serotype, including the AMR gene aac (6')-Iaa. While cell surface proteins were shown to be the main target of positive selection, some proteins with possible functions in AMR and virulence also showed evidence for positive selection. Homologous recombination mainly acted on prophage-associated proteins. CONCLUSIONS: Our data indicates a strong association between genome content of S. enterica and serotype. Evolutionary patterns observed in S. Typhimurium are consistent with multiple emergence events of AMR strains and/or ecological success of this serotype in different hosts or habitats. Evolutionary patterns of S. Newport suggested that antimicrobial resistance emerged in one single lineage, Lineage IIC. A recent population bottleneck and genome decay observed in AMR S. Dublin are congruent with its narrow host range. Finally, our results suggest the potentially important role of positive selection in the evolution of antimicrobial resistance, host adaptation and serotype diversification in S. enterica.


Assuntos
Antibacterianos/farmacologia , Evolução Molecular , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Sorogrupo , Humanos , Filogenia
13.
J Dairy Sci ; 102(7): 5979-6000, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31128867

RESUMO

Some gram-negative bacteria, including Pseudomonas spp., can grow at refrigeration temperatures and cause flavor, odor, and texture defects in fluid milk. Historical and modern cases exist of gray and blue color defects in fluid milk due to Pseudomonas, and several recent reports have detailed fresh cheese spoilage associated with blue-pigment-forming Pseudomonas. Our goal was to investigate the genomes of pigmented Pseudomonas isolates responsible for historical and modern pigmented spoilage of dairy products in the United States to determine the genetic basis of pigment-forming phenotypes. We performed whole genome sequencing of 9 Pseudomonas isolates: 3 from recent incidents of gray-pigmented fluid milk (Pseudomonas fluorescens group), 1 from blue-pigmented cheese (P. fluorescens group), 2 from a historical blue milk spoilage incident (Pseudomonas putida group), and 3 with no evidence for blue or gray pigment formation (2 from P. fluorescens group and 1 from Pseudomonas chlororaphis group). All 6 isolates collected from products with a gray or blue pigment defect were confirmed to produce pigment using potato dextrose agar or pasteurized milk. A subset of 2 isolates was selected for inoculation into milk and onto the surface of a model cheese for subsequent color measurement. These isolates produced different colors on potato dextrose agar, but produced nearly identical color defects in milk and on model cheese. For the same subset of 2 isolates, the gray color defect in milk was produced only in containers with ample headspace and not in full containers, suggesting that oxygen is vital for pigment formation. This work also demonstrated that a Pseudomonas isolate from cheese can produce a pigment defect in milk, and vice versa. Comparative genomics identified an accessory locus encoding tryptophan biosynthesis genes that was present in all isolates that produced gray or blue pigment under laboratory conditions and was only previously reported in 2 P. fluorescens isolates responsible for blue mozzarella in Italy. Because this locus was found in genetically distant isolates belonging to different Pseudomonas species groups, it may have been acquired via horizontal gene transfer. These data suggest that several past and present gray- or blue-pigmented dairy spoilage events share a common genetic etiology that transcends species-level identification and merits further investigation to determine mechanistic details and modes of prevention.


Assuntos
Queijo/análise , Genoma Bacteriano/fisiologia , Leite/química , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Animais , Queijo/microbiologia , Cor , Loci Gênicos/fisiologia , Genômica , Itália , Leite/microbiologia , Fenótipo , Pigmentação , Pigmentos Biológicos/biossíntese , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo
14.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29330180

RESUMO

While some species in the Bacillus cereus group are well-characterized human pathogens (e.g., B. anthracis and B. cereus sensu stricto), the pathogenicity of other species (e.g., B. pseudomycoides) either has not been characterized or is presently not well understood. To provide an updated characterization of the pathogenic potential of species in the B. cereus group, we classified a set of 52 isolates, including 8 type strains and 44 isolates from dairy-associated sources, into 7 phylogenetic clades and characterized them for (i) the presence of toxin genes, (ii) phenotypic characteristics used for identification, and (iii) cytotoxicity to human epithelial cells. Overall, we found that B. cereus toxin genes are broadly distributed but are not consistently present within individual species and/or clades. After growth at 37°C, isolates within a clade did not typically show a consistent cytotoxicity phenotype, except for isolates in clade VI (B. weihenstephanensis/B. mycoides), where none of the isolates were cytotoxic, and isolates in clade I (B. pseudomycoides), which consistently displayed cytotoxic activity. Importantly, our study highlights that B. pseudomycoides is cytotoxic toward human cells. Our results indicate that the detection of toxin genes does not provide a reliable approach to predict the pathogenic potential of B. cereus group isolates, as the presence of toxin genes is not always consistent with cytotoxicity phenotype. Overall, our results suggest that isolates from multiple B. cereus group clades have the potential to cause foodborne illness, although cytotoxicity is not always consistently found among isolates within each clade.IMPORTANCE Despite the importance of the Bacillus cereus group as a foodborne pathogen, characterizations of the pathogenic potential of all B. cereus group species were lacking. We show here that B. pseudomycoides (clade I), which has been considered a harmless environmental microorganism, produces toxins and exhibits a phenotype consistent with the production of pore-forming toxins. Furthermore, B. mycoides/B. weihenstephanensis isolates (clade VI) did not show cytotoxicity when grown at 37°C, despite carrying multiple toxin genes. Overall, we show that the current standard methods to characterize B. cereus group isolates and to detect the presence of toxin genes are not reliable indicators of species, phylogenetic clades, or an isolate's cytotoxic capacity, suggesting that novel methods are still needed for differentiating pathogenic from nonpathogenic species within the B. cereus group. Our results also contribute data that are necessary to facilitate risk assessments and a better understanding as to which B. cereus group species are likely to cause foodborne illness.


Assuntos
Bacillus/patogenicidade , Toxinas Bacterianas/metabolismo , Bacillus/química , Bacillus/genética , Bacillus cereus/química , Bacillus cereus/genética , Bacillus cereus/patogenicidade , Genoma Bacteriano , Filogenia
15.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389543

RESUMO

Sequencing of single genes remains an important tool that allows the rapid classification of bacteria. Sequencing of a portion of sigB, which encodes a stress-responsive alternative sigma factor, has emerged as a commonly used molecular tool for the initial characterization of diverse Listeria isolates. In this study, evolutionary approaches were used to assess the validity of sigB allelic typing for Listeria For a data set of 4,280 isolates, sigB allelic typing showed a Simpson's index of diversity of 0.96. Analyses of 164 sigB allelic types (ATs) found among the 6 Listeriasensu stricto species, representing these 4,280 isolates, indicate that neither frequent homologous recombination nor positive selection significantly contributed to the evolution of sigB, confirming its genetic stability. The molecular clock test provided evidence for unequal evolution rates across clades; Listeria welshimeri displayed the lowest sigB diversity and was the only species in which sigB evolved in a clocklike manner, implying a unique natural history. Among the four L. monocytogenes lineages, sigB evolution followed a molecular clock only in lineage IV. Moreover, sigB displayed a significant negative Tajima D value in lineage II, suggesting a recent population bottleneck followed by lineage expansion. The absence of positive selection along with the violation of the molecular clock suggested a nearly neutral mechanism of Listeriasensu strictosigB evolution. While comparison with a whole-genome sequence-based phylogeny revealed that the sigB phylogeny did not correctly reflect the ancestry of L. monocytogenes lineage IV, the availability of a large sigB AT database allowed accurate species classification.IMPORTANCEsigB allelic typing has been widely used for species delineation and subtyping of Listeria However, an informative evaluation of this method from an evolutionary perspective was missing. Our data indicate that the genetic stability of sigB is affected by neither frequent homologous recombination nor positive selection, which supports that sigB allelic typing provides reliable subtyping and classification of Listeria sensu stricto strains. However, multigene data are required for accurate phylogeny reconstruction of Listeria This study thus contributes to a better understanding of the evolution of sigB and confirms the robustness of the sigB subtyping system for Listeria.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Evolução Molecular , Listeria/genética , Listeria/isolamento & purificação , Filogenia , Fator sigma/genética , Alelos , Proteínas de Bactérias/metabolismo , Variação Genética , Listeria/classificação , Listeria/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeriose/microbiologia , Recombinação Genética , Fator sigma/metabolismo
16.
Appl Environ Microbiol ; 83(17)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625989

RESUMO

The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-d-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMinerIMPORTANCE Bacillus cereus is a foodborne pathogen that is estimated to cause tens of thousands of illnesses each year in the United States alone. Even with molecular methods, it can be difficult to distinguish nonpathogenic B. cereus group isolates from their pathogenic counterparts, including the human pathogen Bacillus anthracis, which is responsible for anthrax, as well as the insect pathogen B. thuringiensis By using the variety of typing schemes employed by BTyper, users can rapidly classify, characterize, and assess the virulence potential of any isolate using its nucleotide sequencing data.

17.
Int J Syst Evol Microbiol ; 67(11): 4397-4404, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945531

RESUMO

A strain of lactic acid bacteria, designated 159469T, isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469T was closely related to Lactococcus garvieae ATCC 43921T, showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA-DNA hybridization value of 50.7  % were determined for the genome of strain 159469T, when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469T (=LMG 30040T=DSM 104842T).


Assuntos
Abscesso/microbiologia , Lactococcus/classificação , Marsupiais/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Lactococcus/genética , Lactococcus/isolamento & purificação , Hibridização de Ácido Nucleico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
Food Microbiol ; 68: 24-33, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28800822

RESUMO

Wildlife intrusion has been associated with pathogen contamination of produce. However, few studies have examined pathogen transfer from wildlife feces to pre-harvest produce. This study was performed to calculate transfer coefficients for Escherichia coli from simulated wildlife feces to field-grown lettuce during irrigation. Rabbit feces inoculated with a 3-strain cocktail of non-pathogenic E. coli were placed in a lettuce field 2.5-72 h before irrigation. Following irrigation, the E. coli concentration on the lettuce was determined. After exclusion of an outlier with high E. coli levels (Most Probable Number = 5.94*108), the average percent of E. coli in the feces that transferred to intact lettuce heads was 0.0267% (Standard Error [SE] = 0.0172). Log-linear regression showed that significantly more E. coli transferred to outer leaves compared to inner leaves (Effect = 1.3; 95% Confidence Interval = 0.4, 2.1). Additionally, the percent of E. coli that transferred from the feces to the lettuce decreased significantly with time after fecal placement, and as the distance between the lettuce and the feces, and the lettuce and the sprinklers increased. These findings provide key data that may be used in future quantitative risk assessments to identify potential intervention strategies for reducing food safety risks associated with fresh produce.


Assuntos
Animais Selvagens/microbiologia , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Contaminação de Alimentos/análise , Lactuca/microbiologia , Irrigação Agrícola , Animais , Escherichia coli/classificação , Escherichia coli/genética , Inocuidade dos Alimentos , New England
19.
BMC Genomics ; 17: 581, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507015

RESUMO

BACKGROUND: Bacillus cereus group isolates that produce diarrheal or emetic toxins are frequently isolated from raw milk and, in spore form, can survive pasteurization. Several species within the B. cereus group are closely related and cannot be reliably differentiated by established taxonomical criteria. While B. cereus is traditionally recognized as the principal causative agent of foodborne disease in this group, there is a need to better understand the distribution and expression of different toxin and virulence genes among B. cereus group food isolates to facilitate reliable characterization that allows for assessment of the likelihood of a given isolate to cause a foodborne disease. RESULTS: We performed whole genome sequencing of 22 B. cereus group dairy isolates, which represented considerable genetic diversity not covered by other isolates characterized to date. Maximum likelihood analysis of these genomes along with 47 reference genomes representing eight validly published species revealed nine phylogenetic clades. Three of these clades were represented by a single species (B. toyonensis -clade V, B. weihenstephanensis - clade VI, B. cytotoxicus - VII), one by two dairy-associated isolates (clade II; representing a putative new species), one by two species (B. mycoides, B. pseudomycoides - clade I) and four by three species (B. cereus, B. thuringiensis, B. anthracis - clades III-a, b, c and IV). Homologues of genes encoding a principal diarrheal enterotoxin (hemolysin BL) were distributed across all, except the B. cytotoxicus clade. Using a lateral flow immunoassay, hemolysin BL was detected in 13 out of 18 isolates that carried hblACD genes. Isolates from clade III-c (which included B. cereus and B. thuringiensis) consistently did not carry hblACD and did not produce hemolysin BL. Isolates from clade IV (B. cereus, B. thuringiensis) consistently carried hblACD and produced hemolysin BL. Compared to others, clade IV was significantly (p = 0.0001) more likely to produce this toxin. Isolates from clade VI (B. weihenstephanensis) carried hblACD homologues, but did not produce hemolysin BL, possibly due to amino acid substitutions in different toxin-encoding genes. CONCLUSIONS: Our results demonstrate that production of diarrheal enterotoxin hemolysin BL is neither inclusive nor exclusive to B. cereus sensu stricto, and that phylogenetic classification of isolates may be better than taxonomic identification for assessment of B. cereus group isolates risk for causing a diarrheal foodborne disease.


Assuntos
Bacillus cereus/classificação , Bacillus cereus/fisiologia , Microbiologia de Alimentos , Genoma Bacteriano , Genômica , Proteínas Hemolisinas/biossíntese , Filogenia , Alelos , Substituição de Aminoácidos , Antígenos de Bactérias/genética , Bacillus cereus/isolamento & purificação , Toxinas Bacterianas/genética , Enterotoxinas/genética , Expressão Gênica , Genes Bacterianos , Variação Genética , Genômica/métodos , Genótipo , Proteínas Hemolisinas/genética , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Virulência/genética
20.
Int J Syst Evol Microbiol ; 66(11): 4744-4753, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27520992

RESUMO

A facultatively anaerobic, spore-forming Bacillus strain, FSL W8-0169T, collected from raw milk stored in a silo at a dairy powder processing plant in the north-eastern USA was initially identified as a Bacillus cereus group species based on a partial sequence of the rpoB gene and 16S rRNA gene sequence. Analysis of core genome single nucleotide polymorphisms clustered this strain separately from known B. cereus group species. Pairwise average nucleotide identity blast values obtained for FSL W8-0169T compared to the type strains of existing B. cereus group species were <95 % and predicted DNA-DNA hybridization values were <70 %, suggesting that this strain represents a novel B. cereus group species. We characterized 10 additional strains with the same or closely related rpoB allelic type, by whole genome sequencing and phenotypic analyses. Phenotypic characterization identified a higher content of iso-C16 : 0 fatty acid and the combined inability to ferment sucrose or to hydrolyse arginine as the key characteristics differentiating FSL W8-0169T from other B. cereus group species. FSL W8-0169T is psychrotolerant, produces haemolysin BL and non-haemolytic enterotoxin, and is cytotoxic in a HeLa cell model. The name Bacillus wiedmannii sp. nov. is proposed for the novel species represented by the type strain FSL W8-0169T (=DSM 102050T=LMG 29269T).


Assuntos
Bacillus/classificação , Laticínios/microbiologia , Filogenia , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus cereus/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Indústria de Laticínios , Ácidos Graxos/química , Células HeLa , Humanos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA