Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(7): 7621-7667, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057094

RESUMO

The ß-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise ß-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves ß-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to ß-cell malfunction and the progression of T2D, often surpassing the impact of outright ß-cell loss. Alterations in the expressions of specific genes and transcription factors unique to ß-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of ß-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting ß-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing ß-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.

2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674023

RESUMO

Cisplatin and other platinum-derived chemotherapy drugs have been used for the treatment of cancer for a long time and are often combined with other medications. Unfortunately, tumours often develop resistance to cisplatin, forcing scientists to look for alternatives or synergistic combinations with other drugs. In this work, we attempted to find a potential synergistic effect between cisplatin and cannabinoid delta-9-THC, as well as the high-THC Cannabis sativa extract, for the treatment of HT-29, HCT-116, and LS-174T colorectal cancer cell lines. However, we found that combinations of the high-THC cannabis extract with cisplatin worked antagonistically on the tested colorectal cancer cell lines. To elucidate the mechanisms of drug interactions and the distinct impacts of individual treatments, we conducted a comprehensive transcriptomic analysis of affected pathways within the colorectal cancer cell line HT-29. Our primary objective was to gain a deeper understanding of the underlying molecular mechanisms associated with each treatment modality and their potential interactions. Our findings revealed an antagonistic interaction between cisplatin and high-THC cannabis extract, which could be linked to alterations in gene transcription associated with cell death (BCL2, BAD, caspase 10), DNA repair pathways (Rad52), and cancer pathways related to drug resistance.


Assuntos
Cannabis , Cisplatino , Neoplasias Colorretais , Dronabinol , Extratos Vegetais , Transcriptoma , Humanos , Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Dronabinol/farmacologia , Cannabis/química , Extratos Vegetais/farmacologia , Transcriptoma/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células HT29 , Perfilação da Expressão Gênica/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/efeitos dos fármacos
3.
Curr Issues Mol Biol ; 45(8): 6743-6774, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623246

RESUMO

Intestinal inflammation and dysbiosis can lead to inflammatory bowel diseases (IBD) and systemic inflammation, affecting multiple organs. Developing novel anti-inflammatory therapeutics is crucial for preventing IBD progression. Serotonin receptor type 2A (5-HT2A) ligands, including psilocybin (Psi), 4-Acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), and ketanserin (Ket), along with transient receptor potential (TRP) channel ligands like capsaicin (Cap), curcumin (Cur), and eugenol (Eug), show promise as anti-inflammatory agents. In this study, we investigated the cytotoxic and anti-inflammatory effects of Psi, 4-AcO-DMT, Ket, Cap, Cur, and Eug on human small intestinal epithelial cells (HSEIC). HSEIC were exposed to tumor necrosis factor (TNF)-α and interferon (IFN)-γ for 24 h to induce an inflammatory response, followed by treatment with each compound at varying doses (0-800 µM) for 24 to 96 h. The cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and protein expression by Western blot (WB) analysis. As single treatments, Psi (40 µM), Cur (0.5 µM), and Eug (50 µM) significantly reduced COX-2 levels without cytotoxic effects. When combined, Psi (40 µM) and Cur (0.5 µM) exhibited synergy, resulting in a substantial decrease in COX-2 protein levels (-28× fold change), although the reduction in IL-6 was less pronounced (-1.6× fold change). Psi (20 µM) and Eug (25 µM) demonstrated the most favorable outcomes, with significant decreases in COX-2 (-19× fold change) and IL-6 (-10× fold change) protein levels. Moreover, the combination of Psi and Eug did not induce cytotoxic effects in vitro at any tested doses. This study is the first to explore the anti-inflammatory potential of psilocybin and 4-AcO-DMT in the intestines while highlighting the potential for synergy between the 5-HT2A and TRP channel ligands, specifically Psi and Eug, in alleviating the TNF-α/IFN-γ-induced inflammatory response in HSEIC. Further investigations should evaluate if the Psi and Eug combination has the therapeutic potential to treat IBD in vivo.

4.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834191

RESUMO

Platinum-derived chemotherapy medications are often combined with other conventional therapies for treating different tumors, including colorectal cancer. However, the development of drug resistance and multiple adverse effects remain common in clinical settings. Thus, there is a necessity to find novel treatments and drug combinations that could effectively target colorectal cancer cells and lower the probability of disease relapse. To find potential synergistic interaction, we designed multiple different combinations between cisplatin, cannabidiol, and intermittent serum starvation on colorectal cancer cell lines. Based on the cell viability assay, we found that combinations between cannabidiol and intermittent serum starvation, cisplatin and intermittent serum starvation, as well as cisplatin, cannabidiol, and intermittent serum starvation can work in a synergistic fashion on different colorectal cancer cell lines. Furthermore, we analyzed differentially expressed genes and affected pathways in colorectal cancer cell lines to understand further the potential molecular mechanisms behind the treatments and their interactions. We found that synergistic interaction between cannabidiol and intermittent serum starvation can be related to changes in the transcription of genes responsible for cell metabolism and cancer's stress pathways. Moreover, when we added cisplatin to the treatments, there was a strong enrichment of genes taking part in G2/M cell cycle arrest and apoptosis.


Assuntos
Antineoplásicos , Canabidiol , Neoplasias Colorretais , Humanos , Cisplatino/farmacologia , Canabidiol/farmacologia , Linhagem Celular Tumoral , Apoptose/genética , Perfilação da Expressão Gênica , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sinergismo Farmacológico
5.
Molecules ; 28(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37446655

RESUMO

Inflammation is the response of the innate immune system to any type of injury. Although acute inflammation is critical for survival, dysregulation of the innate immune response leads to chronic inflammation. Many synthetic anti-inflammatory drugs have side effects, and thus, natural anti-inflammatory compounds are still needed. Cannabis sativa L. may provide a good source of anti-inflammatory molecules. Here, we tested the anti-inflammatory properties of cannabis extracts and pure cannabinoids in lipopolysaccharide (LPS)-induced inflammation in human THP-1 macrophages. We found that pre-treatment with cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), or extracts containing high levels of CBD or THC reduced the level of induction of various cytokines. The CBD was more efficient than THC, and the extracts were more efficient than pure cannabinoids. Finally, IL-6, IL-10, and MCP-1 cytokines were most sensitive to pre-treatments with CBD and THC, while IL-1ß, IL-8, and TNF-α were less responsive. Thus, our work demonstrates the potential of the use of cannabinoids or/and cannabis extracts for the reduction of inflammation and establishes IL-6 and MCP-1 as the sensitive markers for the analysis of the effect of cannabinoids on inflammation in macrophages.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Anti-Inflamatórios/farmacologia , Canabidiol/análise , Agonistas de Receptores de Canabinoides , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Citocinas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-6 , Lipopolissacarídeos/toxicidade , Macrófagos , Extratos Vegetais/farmacologia
6.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764262

RESUMO

Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.


Assuntos
Canabinol , Inflamassomos , Humanos , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia , Proteínas do Tecido Nervoso , Conexinas
7.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005341

RESUMO

Inflammation is a natural immune response to injury, infection, or tissue damage. It plays a crucial role in maintaining overall health and promoting healing. However, when inflammation becomes chronic and uncontrolled, it can contribute to the development of various inflammatory conditions, including type 2 diabetes. In type 2 diabetes, pancreatic ß-cells have to overwork and the continuous impact of a high glucose, high lipid (HG-HL) diet contributes to their loss and dedifferentiation. This study aimed to investigate the anti-inflammatory effects of eugenol and its impact on the loss and dedifferentiation of ß-cells. THP-1 macrophages were pretreated with eugenol for one hour and then exposed to lipopolysaccharide (LPS) for three hours to induce inflammation. Additionally, the second phase of NLRP3 inflammasome activation was induced by incubating the LPS-stimulated cells with adenosine triphosphate (ATP) for 30 min. The results showed that eugenol reduced the expression of proinflammatory genes, such as IL-1ß, IL-6 and cyclooxygenase-2 (COX-2), potentially by inhibiting the activation of transcription factors NF-κB and TYK2. Eugenol also demonstrated inhibitory effects on the levels of NLRP3 mRNA and protein and Pannexin-1 (PANX-1) activation, eventually impacting the assembly of the NLRP3 inflammasome and the production of mature IL-1ß. Additionally, eugenol reduced the elevated levels of adenosine deaminase acting on RNA 1 (ADAR1) transcript, suggesting its role in post-transcriptional mechanisms that regulate inflammatory responses. Furthermore, eugenol effectively decreased the loss of ß-cells in response to HG-HL, likely by mitigating apoptosis. It also showed promise in suppressing HG-HL-induced ß-cell dedifferentiation by restoring ß-cell-specific biomarkers. Further research on eugenol and its mechanisms of action could lead to the development of therapeutic interventions for inflammatory disorders and the preservation of ß-cell function in the context of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Eugenol/farmacologia , Eugenol/metabolismo , Desdiferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos , NF-kappa B/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Glucose/metabolismo
8.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985596

RESUMO

Inflammation is an organism's biological defense mechanism. Acute and chronic inflammation of the body triggers the production of pro- and anti-inflammatory pathways that can affect the content of cytokines in the brain and thus cause brain inflammation. Disorders such as depression and posttraumatic stress disorder (PTSD) are often associated with elevated inflammation. Recently, positive and promising clinical results of psilocybin for the treatment of depression and PTSD were reported. Thus, we decided to test whether psilocybin alone or in combination with eugenol, an anti-inflammatory and antioxidant agent, would prevent the increase in or decrease the content of cytokines in the brain of C57BL/6J mice injected with lipopolysaccharides (LPS). Two experiments were performed, one with pre-treatment of mice through gavage with psilocybin (0.88 mg/kg), eugenol (17.6 mg/kg), or combinations of psilocybin and eugenol (1:10, 1:20, or 1:50), followed by intraperitoneal injection of LPS, and the second, post-treatment, with initial injection with LPS, followed by treatment with psilocybin, eugenol, or their combination. Brain tissues were collected, and cytokines were analyzed by qRT-PCR, Western blot, and ELISA. Data were analyzed with a one-way ANOVA followed by Tukey's post hoc test or with multiple unpaired t-tests. LPS upregulated mRNA expression of COX-2, TNF-α, IL-1ß, and IL-6. All pre-treatments decreased the expression of COX-2 and TNF-α, with psilocybin alone and in 1:50 combination, with eugenol being the most effective. In the post-treatment, all combinations of psilocybin and eugenol were effective in reducing inflammation, with the 1:50 ratio displaying the most prominent results in reducing the mRNA content of tested cytokines. Western blot analysis confirmed the effect on COX-2 and IL-1ß proteins. Finally, the ELISA showed that post-treatment with psilocybin + eugenol (1:50) demonstrated the best results, decreasing the expression of multiple markers including IL-6 and IL-8. This demonstrates the anti-inflammatory effects of a combination of psilocybin and eugenol in the brain of animals with systemically induced inflammation.


Assuntos
Encefalite , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/efeitos adversos , Eugenol/farmacologia , Eugenol/uso terapêutico , Interleucina-6 , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Ciclo-Oxigenase 2/genética , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro
9.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955938

RESUMO

Identifying effective anti-aging compounds is a cornerstone of modern longevity, aging, and skin-health research. There is considerable evidence of the effectiveness of nutrient signaling regulators such as metformin, resveratrol, and rapamycin in longevity and anti-aging studies; however, their potential protective role in skin aging is controversial. In light of the increasing appearance of phytocannabinoids in beauty products without rigorous research on their rejuvenation efficacy, we decided to investigate the potential role of phytocannabinoids in combination with nutrient signaling regulators in skin rejuvenation. Utilizing CCD-1064Sk skin fibroblasts, the effect of metformin, triacetylresveratrol, and rapamycin combined with phytocannabinoids on cellular viability, functional activity, metabolic function, and nuclear architecture was tested. We found triacetylresveratrol combined with cannabidiol increased the viability of skin fibroblasts (p < 0.0001), restored wound-healing functional activity (p < 0.001), reduced metabolic dysfunction, and ameliorated nuclear eccentricity and circularity in senescent fibroblasts (p < 0.01). Conversely, metformin with or without phytocannabinoids did not show any beneficial effects on functional activity, while rapamycin inhibited cell viability (p < 0.01) and the speed of wound healing (p < 0.001). Therefore, triacetylresveratrol and cannabidiol can be a valuable source of biologically active substances used in aging and more studies using animals to confirm the efficacy of cannabidiol combined with triacetylresveratrol should be performed.


Assuntos
Canabidiol , Metformina , Animais , Canabidiol/metabolismo , Canabidiol/farmacologia , Senescência Celular , Fibroblastos/metabolismo , Humanos , Metformina/metabolismo , Metformina/farmacologia , Nutrientes , Fenótipo , Sirolimo/farmacologia
10.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806127

RESUMO

Modern understanding of aging is based on the accumulation of cellular damage during one's life span due to the gradual deterioration of regenerative mechanisms in response to the continuous effect of stress, lifestyle, and environmental factors, followed by increased morbidity and mortality. Simultaneously, the number of senescent cells accumulate exponentially as organisms age. Cell culture models are valuable tools to investigate the mechanisms of aging by inducing cellular senescence in stress-induced premature senescence (SIPS) models. Here, we explain the three-step and one-step H2O2-induced senescence models of SIPS designed and reproduced on different human dermal fibroblast cell lines (CCD-1064Sk, CCD-1135Sk, and BJ-5ta). In both SIPS models, it was evident that the fibroblasts developed similar aging characteristics as cells with replicative senescence. Among the most noticeable senescent biomarkers were increased ß-Gal expression, high levels of the p21 protein, altered levels of cell-cycle regulators (i.e., CDK2 and c-Jun), compromised extracellular matrix (ECM) composition, reduced cellular viability, and delayed wound healing properties. Based on the significant increase in senescence biomarkers in fibroblast cultures, reduced functional activity, and metabolic dysfunction, the one-step senescence model was chosen as a feasible and reliable method for future testing of anti-aging compounds.


Assuntos
Fibroblastos , Peróxido de Hidrogênio , Biomarcadores/metabolismo , Células Cultivadas , Senescência Celular/genética , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fenótipo
11.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144796

RESUMO

Cannabis sativa is one of the oldest cultivated plants. Many of the medicinal properties of cannabis are known, although very few cannabis-based formulations became prescribed drugs. Previous research demonstrated that cannabis varieties are very different in their medicinal properties, likely due to the entourage effect-the synergistic or antagonistic effect of various cannabinoids and terpenes. In this work, we analyzed 25 cannabis extracts containing high levels of delta-9-tetrahydrocannabinol (THC). We used HCC1806 squamous cell carcinoma and demonstrated various degrees of efficiency of the tested extracts, from 66% to 92% of growth inhibition of cancer cells. Inflammation was tested by induction of inflammation with TNF-α/IFN-γ in WI38 human lung fibroblasts. The efficiency of the extracts was tested by analyzing the expression of COX2 and IL6; while some extracts aggravated inflammation by increasing the expression of COX2/IL6 by 2-fold, other extracts decreased inflammation, reducing expression of cytokines by over 5-fold. We next analyzed the level of THC, CBD, CBG and CBN and twenty major terpenes and performed clustering and association analysis between the chemical composition of the extracts and their efficiency in inhibiting cancer growth and curbing inflammation. A positive correlation was found between the presence of terpinene (pval = 0.002) and anti-cancer property; eucalyptol came second, with pval of 0.094. p-cymene and ß-myrcene positively correlated with the inhibition of IL6 expression, while camphor correlated negatively. No significant correlation was found for COX2. We then performed a correlation analysis between cannabinoids and terpenes and found a positive correlation for the following pairs: α-pinene vs. CBD, p-cymene vs. CBGA, terpenolene vs. CBGA and isopulegol vs. CBGA. Our work, thus, showed that most of high-THC extracts demonstrate anti-cancer activity, while only certain selected extracts showed anti-inflammatory activity. Presence of certain terpenes, such as terpinene, eucalyptol, cymene, myrcene and camphor, appear to have modulating effects on the activity of cannabinoids.


Assuntos
Canabidiol , Canabinoides , Cannabis , Alucinógenos , Humanos , Anti-Inflamatórios/farmacologia , Cânfora , Canabidiol/análise , Agonistas de Receptores de Canabinoides , Canabinoides/análise , Canabinoides/farmacologia , Cannabis/química , Ciclo-Oxigenase 2 , Cimenos , Dronabinol/análise , Dronabinol/farmacologia , Eucaliptol , Inflamação/tratamento farmacológico , Interleucina-6 , Extratos Vegetais/química , Terpenos/farmacologia , Fator de Necrose Tumoral alfa
12.
Proc Natl Acad Sci U S A ; 115(28): 7392-7397, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941603

RESUMO

It remains unknown whether microRNA (miRNA/miR) can target transfer RNA (tRNA) molecules. Here we provide evidence that miR-34a physically interacts with and functionally targets tRNAiMet precursors in both in vitro pulldown and Argonaute 2 (AGO2) cleavage assays. We find that miR-34a suppresses breast carcinogenesis, at least in part by lowering the levels of tRNAiMet through AGO2-mediated repression, consequently inhibiting the proliferation of breast cancer cells and inducing cell cycle arrest and apoptosis. Moreover, miR-34a expression is negatively correlated with tRNAiMet levels in cancer cell lines. Furthermore, we find that tRNAiMet knockdown also reduces cell proliferation while inducing cell cycle arrest and apoptosis. Conversely, ectopic expression of tRNAiMet promotes cell proliferation, inhibits apoptosis, and accelerates the S/G2 transition. Moreover, the enforced expression of modified tRNAiMet completely restores the phenotypic changes induced by miR-34a. Our results demonstrate that miR-34a directly targets tRNAiMet precursors via AGO2-mediated cleavage, and that tRNAiMet functions as an oncogene, potentially representing a target molecule for therapeutic intervention.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , Precursores de RNA/biossíntese , Processamento Pós-Transcricional do RNA , RNA Neoplásico/biossíntese , RNA de Transferência de Metionina/biossíntese , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ciclo Celular , Feminino , Humanos , Células MCF-7 , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Precursores de RNA/genética , RNA Neoplásico/genética , RNA de Transferência de Metionina/genética
13.
Invest New Drugs ; 38(3): 690-699, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31264069

RESUMO

High-risk, relapsed and refractory neuroblastoma are associated with poor 5-years survival rates, demonstrating the need for investigational therapeutic agents to treat this disease. Taurolidine is derived from the aminosulfoacid taurine and has known anti-microbial and anti-inflammatory properties. Taurolidine has also demonstrated anti-neoplastic effects in a range of cancers, providing the rationale to investigate the activity of taurolidine against neuroblastoma in preclinical studies. We investigated the in vitro activity of taurolidine against neuroblastoma using the alamar blue cytotoxicity assay, phase-contrast light microscopy, western blotting and analysis of global gene expression by RNA-Seq. In vivo activity of taurolidine was evaluated using mouse xenograft models. In vitro pre-clinical data show that taurolidine is cytotoxic to neuroblastoma cell lines, inducing cell death by apoptosis. Analysis of global gene expression and determination of signaling pathway activation scores using the in silico Pathway Activation Network Decomposition Analysis (iPANDA) platform indicates that taurolidine has an effect on the Notch, mitogen-activated protein kinase (MAPK) and interleukin-10 (IL-10) signaling pathways. In vivo experiments in xenograft mouse models show that taurolidine decreases tumor growth and improves survival. These results provide supportive pre-clinical data on the activity of taurolidine against neuroblastoma. The findings support the rationale for further evaluation of taurolidine for the treatment of relapsed/refractory neuroblastoma patients in an early phase clinical trial.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Neuroblastoma/tratamento farmacológico , Taurina/análogos & derivados , Tiadiazinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Xenoenxertos/efeitos dos fármacos , Xenoenxertos/metabolismo , Humanos , Camundongos , Camundongos SCID , Neuroblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taurina/farmacologia
14.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396562

RESUMO

There are many varieties of Cannabis sativa that differ from each other by composition of cannabinoids, terpenes and other molecules. The medicinal properties of these cultivars are often very different, with some being more efficient than others. This report describes the development of a method and software for the analysis of the efficiency of various cannabis extracts to detect the anti-inflammatory properties of the various cannabis extracts. The method uses high-throughput gene expression profiling data but can potentially use other omics data as well. According to the signaling pathway topology, the gene expression profiles are convoluted into the signaling pathway activities using a signaling pathway impact analysis (SPIA) method. The method was tested by inducing inflammation in human 3D epithelial tissues, including intestine, oral and skin, and then exposing these tissues to various extracts and then performing transcriptome analysis. The analysis showed a different efficiency of the various extracts in restoring the transcriptome changes to the pre-inflammation state, thus allowing to calculate a different cannabis drug efficiency index (CDEI).


Assuntos
Canabinoides/farmacologia , Cannabis/química , Monitoramento de Medicamentos/métodos , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Software , Transcriptoma/efeitos dos fármacos , Biomarcadores/análise , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo
15.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722415

RESUMO

The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism's ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.


Assuntos
Envelhecimento/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , MicroRNAs/biossíntese , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Envelhecimento/patologia , Fibroblastos/patologia , Humanos , Envelhecimento da Pele/patologia
16.
BMC Cancer ; 18(1): 817, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103729

RESUMO

BACKGROUND: Breast cancer is the most common malignancy in women worldwide. Although the endocrine therapy that targets estrogen receptor α (ERα) signaling has been well established as an effective adjuvant treatment for patients with ERα-positive breast cancers, long-term exposure may eventually lead to the development of acquired resistance to the anti-estrogen drugs, such as fulvestrant and tamoxifen. A better understanding of the mechanisms underlying antiestrogen resistance and identification of the key molecules involved may help in overcoming antiestrogen resistance in breast cancer. METHODS: The whole-genome gene expression and DNA methylation profilings were performed using fulvestrant-resistant cell line 182R-6 and tamoxifen-resistant cell line TAMR-1 as a model system. In addition, qRT-PCR and Western blot analysis were performed to determine the levels of mRNA and protein molecules. MTT, apoptosis and cell cycle analyses were performed to examine the effect of either guanine nucleotide-binding protein beta-4 (GNB4) overexpression or knockdown on cell proliferation, apoptosis and cell cycle. RESULTS: Among 9 candidate genes, GNB4 was identified and validated by qRT-PCR as a potential target silenced by DNA methylation via DNA methyltransferase 3B (DNMT3B). We generated stable 182R-6 and TAMR-1 cell lines that are constantly expressing GNB4 and determined the effect of the ectopic GNB4 on cell proliferation, cell cycle, and apoptosis of the antiestrogen-resistant cells in response to either fulvestrant or tamoxifen. Ectopic expression of GNB4 in two antiestrogen resistant cell lines significantly promoted cell growth and shortened cell cycle in the presence of either fulvestrant or tamoxifen. The ectopic GNB4 induced apoptosis in 182R-6 cells, whereas it inhibited apoptosis in TAMR-1 cells. Many regulators controlling cell cycle and apoptosis were aberrantly expressed in two resistant cell lines in response to the enforced GNB4 expression, which may contribute to GNB4-mediated biologic and/or pathologic processes. Furthermore, knockdown of GNB4 decreased growth of both antiestrogen resistant and sensitive breast cancer cells. CONCLUSION: GNB4 is important for growth of breast cancer cells and a potential target for treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , DNA (Citosina-5-)-Metiltransferases/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Tamoxifeno/administração & dosagem , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/administração & dosagem , Estradiol/efeitos adversos , Estradiol/análogos & derivados , Antagonistas de Estrogênios/administração & dosagem , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Fulvestranto , Técnicas de Silenciamento de Genes , Genoma Humano , Humanos , Células MCF-7 , Tamoxifeno/efeitos adversos , DNA Metiltransferase 3B
17.
BMC Genomics ; 16: 735, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416693

RESUMO

BACKGROUND: Prognostication of Breast Cancer (BC) relies largely on traditional clinical factors and biomarkers such as hormone or growth factor receptors. Due to their suboptimal specificities, it is challenging to accurately identify the subset of patients who are likely to undergo recurrence and there remains a major need for markers of higher utility to guide therapeutic decisions. MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional regulators of gene expression and have shown promise as potential prognostic markers in several cancer types including BC. RESULTS: In our study, we sequenced miRNAs from 104 BC samples and 11 apparently healthy normal (reduction mammoplasty) breast tissues. We used Case-control (CC) and Case-only (CO) statistical paradigm to identify prognostic markers. Cox-proportional hazards regression model was employed and risk score analysis was performed to identify miRNA signature independent of potential confounders. Representative miRNAs were validated using qRT-PCR. Gene targets for prognostic miRNAs were identified using in silico predictions and in-house BC transcriptome dataset. Gene ontology terms were identified using DAVID bioinformatics v6.7. A total of 1,423 miRNAs were captured. In the CC approach, 126 miRNAs were retained with predetermined criteria for good read counts, from which 80 miRNAs were differentially expressed. Of these, four and two miRNAs were significant for Overall Survival (OS) and Recurrence Free Survival (RFS), respectively. In the CO approach, from 147 miRNAs retained after filtering, 11 and 4 miRNAs were significant for OS and RFS, respectively. In both the approaches, the risk scores were significant after adjusting for potential confounders. The miRNAs associated with OS identified in our cohort were validated using an external dataset from The Cancer Genome Atlas (TCGA) project. Targets for the identified miRNAs were enriched for cell proliferation, invasion and migration. CONCLUSIONS: The study identified twelve non-redundant miRNAs associated with OS and/or RFS. These signatures include those that were reported by others in BC or other cancers. Importantly we report for the first time two new candidate miRNAs (miR-574-3p and miR-660-5p) as promising prognostic markers. Independent validation of signatures (for OS) using an external dataset from TCGA further strengthened the study findings.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/genética , MicroRNAs/biossíntese , Recidiva Local de Neoplasia/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Prognóstico
18.
BMC Med ; 12: 121, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25286408

RESUMO

BACKGROUND: Chronic stress is considered to be one of many causes of human preterm birth (PTB), but no direct evidence has yet been provided. Here we show in rats that stress across generations has downstream effects on endocrine, metabolic and behavioural manifestations of PTB possibly via microRNA (miRNA) regulation. METHODS: Pregnant dams of the parental generation were exposed to stress from gestational days 12 to 18. Their pregnant daughters (F1) and grand-daughters (F2) either were stressed or remained as non-stressed controls. Gestational length, maternal gestational weight gain, blood glucose and plasma corticosterone levels, litter size and offspring weight gain from postnatal days 1 to 30 were recorded in each generation, including F3. Maternal behaviours were analysed for the first hour after completed parturition, and offspring sensorimotor development was recorded on postnatal day (P) 7. F0 through F2 maternal brain frontal cortex, uterus and placenta miRNA and gene expression patterns were used to identify stress-induced epigenetic regulatory pathways of maternal behaviour and pregnancy maintenance. RESULTS: Progressively up to the F2 generation, stress gradually reduced gestational length, maternal weight gain and behavioural activity, and increased blood glucose levels. Reduced offspring growth and delayed behavioural development in the stress cohort was recognizable as early as P7, with the greatest effect in the F3 offspring of transgenerationally stressed mothers. Furthermore, stress altered miRNA expression patterns in the brain and uterus of F2 mothers, including the miR-200 family, which regulates pathways related to brain plasticity and parturition, respectively. Main miR-200 family target genes in the uterus, Stat5b, Zeb1 and Zeb2, were downregulated by multigenerational stress in the F1 generation. Zeb2 was also reduced in the stressed F2 generation, suggesting a causal mechanism for disturbed pregnancy maintenance. Additionally, stress increased placental miR-181a, a marker of human PTB. CONCLUSIONS: The findings indicate that a family history of stress may program central and peripheral pathways regulating gestational length and maternal and newborn health outcomes in the maternal lineage. This new paradigm may model the origin of many human PTB causes.


Assuntos
Nascimento Prematuro/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estresse Psicológico , Animais , Comportamento Animal , Peso ao Nascer , Cruzamento , Epigênese Genética , Feminino , Tamanho da Ninhada de Vivíparos , Gravidez , Ratos
19.
Mutat Res ; 761: 1-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24472301

RESUMO

Research of the past several decades suggests that bacterial infection can lead to genome instability of the host cell often resulting in cancer development. However, there is still a substantial lack of knowledge regarding possible mechanisms involved in the development of genomic instability. Several questions remain unanswered, namely: Why has the causative relationship between the bacterial infection and cancer been established only for a small number of cancers? What is the mechanism responsible for the induction of genome instability and cancer? Is the infection process required to cause genome instability and cancer? In this review, we present a hypothesis that the bacterial infection, exposure to heat-killed bacteria or even some bacterial determinants may trigger genome instability of exposed and distal cells, and thus may cause cancer. We will discuss the mechanisms of host responses to the bacterial infection and present the possible pathways leading to genome instability and cancer through exposure to bacteria.


Assuntos
Infecções Bacterianas/complicações , Infecções Bacterianas/genética , Instabilidade Genômica , Neoplasias/genética , Neoplasias/microbiologia , Animais , Humanos
20.
Genes (Basel) ; 15(2)2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397173

RESUMO

Serotonin emerges as a pivotal factor influencing the growth and functionality of ß-cells. Psilocybin, a natural compound derived from mushrooms of the Psilocybe genus, exerts agonistic effects on the serotonin 5-HT2A and 5-HT2B receptors, thereby mimicking serotonin's behavior. This study investigates the potential impacts of psilocybin on ß-cell viability, dedifferentiation, and function using an in vitro system. The INS-1 832/13 Rat Insulinoma cell line underwent psilocybin pretreatment, followed by exposure to high glucose-high lipid (HG-HL) conditions for specific time periods. After being harvested from treated cells, total transcript and cellular protein were utilized for further investigation. Our findings implied that psilocybin administration effectively mitigates HG-HL-stimulated ß-cell loss, potentially mediated through the modulation of apoptotic biomarkers, which is possibly related to the mitigation of TXNIP, STAT-1, and STAT-3 phosphorylation. Furthermore, psilocybin exhibits the capacity to modulate the expression of key genes associated with ß-cell dedifferentiation, including Pou5f1 and Nanog, indicating its potential in attenuating ß-cell dedifferentiation. This research lays the groundwork for further exploration into the therapeutic potential of psilocybin in Type II diabetes intervention.


Assuntos
Diabetes Mellitus Tipo 2 , Psilocibina , Animais , Ratos , Psilocibina/farmacologia , Sobrevivência Celular , Serotonina , Glucose/farmacologia , Lipídeos , Proteínas de Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA