Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(9): 2209-2223.e16, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670073

RESUMO

Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.


Assuntos
Sistemas CRISPR-Cas , Hexosiltransferases , Lipopolissacarídeos , Proteínas de Membrana , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Hexosiltransferases/metabolismo , Hexosiltransferases/genética , NF-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Receptor 4 Toll-Like/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células HEK293 , Inflamação/metabolismo , Inflamação/genética , Glicosilação , Microscopia Crioeletrônica , Domínio Catalítico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
2.
Proc Natl Acad Sci U S A ; 120(1): e2213437120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36580587

RESUMO

ABCG2 is an ATP-binding cassette (ABC) transporter that extrudes a wide range of xenobiotics and drugs from the cell and contributes to multidrug resistance in cancer cells. Following our recent structural characterization of topotecan-bound ABCG2, here, we present cryo-EM structures of ABCG2 under turnover conditions in complex with a special modulator and slow substrate, tariquidar, in nanodiscs. The structures reveal that similar to topotecan, tariquidar induces two distinct ABCG2 conformations under turnover conditions (turnover-1 and turnover-2). µs-scale molecular dynamics simulations of drug-bound and apo ABCG2 in native-like lipid bilayers, in both topotecan- and tariquidar-bound states, characterize the ligand size as a major determinant of its binding stability. The simulations highlight direct lipid-drug interactions for the smaller topotecan, which exhibits a highly dynamic binding mode. In contrast, the larger tariquidar occupies most of the available volume in the binding pocket, thus leaving little space for lipids to enter the cavity and interact with it. Similarly, when simulating ABCG2 in the apo inward-open state, we also observe spontaneous penetration of phospholipids into the binding cavity. The captured phospholipid diffusion pathway into ABCG2 offers a putative general path to recruit any hydrophobic/amphiphilic substrates directly from the membrane. Our simulations also reveal that ABCG2 rejects cholesterol as a substrate, which is omnipresent in plasma membranes that contain ABCG2. At the same time, cholesterol is found to prohibit the penetration of phospholipids into ABCG2. These molecular findings have direct functional ramifications on ABCG2's function as a transporter.


Assuntos
Resistência a Múltiplos Medicamentos , Topotecan , Ligantes , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fosfolipídeos , Colesterol , Resistencia a Medicamentos Antineoplásicos
3.
Nature ; 563(7731): 426-430, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405239

RESUMO

ABCG2 is a transporter protein of the ATP-binding-cassette (ABC) family that is expressed in the plasma membrane in cells of various tissues and tissue barriers, including the blood-brain, blood-testis and maternal-fetal barriers1-4. Powered by ATP, it translocates endogenous substrates, affects the pharmacokinetics of many drugs and protects against a wide array of xenobiotics, including anti-cancer drugs5-12. Previous studies have revealed the architecture of ABCG2 and the structural basis of its inhibition by small molecules and antibodies13,14. However, the mechanisms of substrate recognition and ATP-driven transport are unknown. Here we present high-resolution cryo-electron microscopy (cryo-EM) structures of human ABCG2 in a substrate-bound pre-translocation state and an ATP-bound post-translocation state. For both structures, we used a mutant containing a glutamine replacing the catalytic glutamate (ABCG2EQ), which resulted in reduced ATPase and transport rates and facilitated conformational trapping for structural studies. In the substrate-bound state, a single molecule of estrone-3-sulfate (E1S) is bound in a central, hydrophobic and cytoplasm-facing cavity about halfway across the membrane. Only one molecule of E1S can bind in the observed binding mode. In the ATP-bound state, the substrate-binding cavity has collapsed while an external cavity has opened to the extracellular side of the membrane. The ATP-induced conformational changes include rigid-body shifts of the transmembrane domains, pivoting of the nucleotide-binding domains (NBDs), and a change in the relative orientation of the NBD subdomains. Mutagenesis and in vitro characterization of transport and ATPase activities demonstrate the roles of specific residues in substrate recognition, including a leucine residue that forms a 'plug' between the two cavities. Our results show how ABCG2 harnesses the energy of ATP binding to extrude E1S and other substrates, and suggest that the size and binding affinity of compounds are important for distinguishing substrates from inhibitors.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/ultraestrutura , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782475

RESUMO

With conformation-specific nanobodies being used for a wide range of structural, biochemical, and cell biological applications, there is a demand for antigen-binding fragments (Fabs) that specifically and tightly bind these nanobodies without disturbing the nanobody-target protein interaction. Here, we describe the development of a synthetic Fab (termed NabFab) that binds the scaffold of an alpaca-derived nanobody with picomolar affinity. We demonstrate that upon complementary-determining region grafting onto this parent nanobody scaffold, nanobodies recognizing diverse target proteins and derived from llama or camel can cross-react with NabFab without loss of affinity. Using NabFab as a fiducial and size enhancer (50 kDa), we determined the high-resolution cryogenic electron microscopy (cryo-EM) structures of nanobody-bound VcNorM and ScaDMT, both small membrane proteins of ∼50 kDa. Using an additional anti-Fab nanobody further facilitated reliable initial three-dimensional structure determination from small cryo-EM test datasets. Given that NabFab is of synthetic origin, is humanized, and can be conveniently expressed in Escherichia coli in large amounts, it may be useful not only for structural biology but also for biomedical applications.


Assuntos
Microscopia Crioeletrônica/métodos , Fragmentos Fab das Imunoglobulinas/química , Proteínas de Membrana/química , Anticorpos de Domínio Único/química , Animais , Camelídeos Americanos , Camelus , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de Proteína
5.
Nature ; 546(7659): 504-509, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28554189

RESUMO

ABCG2 is a constitutively expressed ATP-binding cassette (ABC) transporter that protects many tissues against xenobiotic molecules. Its activity affects the pharmacokinetics of commonly used drugs and limits the delivery of therapeutics into tumour cells, thus contributing to multidrug resistance. Here we present the structure of human ABCG2 determined by cryo-electron microscopy, providing the first high-resolution insight into a human multidrug transporter. We visualize ABCG2 in complex with two antigen-binding fragments of the human-specific, inhibitory antibody 5D3 that recognizes extracellular loops of the transporter. We observe two cholesterol molecules bound in the multidrug-binding pocket that is located in a central, hydrophobic, inward-facing translocation pathway between the transmembrane domains. Combined with functional in vitro analyses, our results suggest a multidrug recognition and transport mechanism of ABCG2, rationalize disease-causing single nucleotide polymorphisms and the allosteric inhibition by the 5D3 antibody, and provide the structural basis of cholesterol recognition by other G-subfamily ABC transporters.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Neoplasias/química , Proteínas de Neoplasias/ultraestrutura , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Anticorpos/química , Anticorpos/imunologia , Anticorpos/ultraestrutura , Sítios de Ligação , Transporte Biológico , Colesterol/química , Colesterol/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Modelos Moleculares , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Domínios Proteicos
6.
Proc Natl Acad Sci U S A ; 117(42): 26245-26253, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020312

RESUMO

ABCB1 detoxifies cells by exporting diverse xenobiotic compounds, thereby limiting drug disposition and contributing to multidrug resistance in cancer cells. Multiple small-molecule inhibitors and inhibitory antibodies have been developed for therapeutic applications, but the structural basis of their activity is insufficiently understood. We determined cryo-EM structures of nanodisc-reconstituted, human ABCB1 in complex with the Fab fragment of the inhibitory, monoclonal antibody MRK16 and bound to a substrate (the antitumor drug vincristine) or to the potent inhibitors elacridar, tariquidar, or zosuquidar. We found that inhibitors bound in pairs, with one molecule lodged in the central drug-binding pocket and a second extending into a phenylalanine-rich cavity that we termed the "access tunnel." This finding explains how inhibitors can act as substrates at low concentration, but interfere with the early steps of the peristaltic extrusion mechanism at higher concentration. Our structural data will also help the development of more potent and selective ABCB1 inhibitors.


Assuntos
Acridinas/metabolismo , Anticorpos Monoclonais/metabolismo , Microscopia Crioeletrônica/métodos , Tetra-Hidroisoquinolinas/metabolismo , Vincristina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Fitogênicos/metabolismo , Proliferação de Células , Resistência a Múltiplos Medicamentos , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
7.
J Biol Chem ; 295(26): 8692-8705, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32265298

RESUMO

Myelin protein P2 is a peripheral membrane protein of the fatty acid-binding protein family that functions in the formation and maintenance of the peripheral nerve myelin sheath. Several P2 gene mutations cause human Charcot-Marie-Tooth neuropathy, but the mature myelin sheath assembly mechanism is unclear. Here, cryo-EM of myelin-like proteolipid multilayers revealed an ordered three-dimensional (3D) lattice of P2 molecules between stacked lipid bilayers, visualizing supramolecular assembly at the myelin major dense line. The data disclosed that a single P2 layer is inserted between two bilayers in a tight intermembrane space of ∼3 nm, implying direct interactions between P2 and two membrane surfaces. X-ray diffraction from P2-stacked bicelle multilayers revealed lateral protein organization, and surface mutagenesis of P2 coupled with structure-function experiments revealed a role for both the portal region of P2 and its opposite face in membrane interactions. Atomistic molecular dynamics simulations of P2 on model membrane surfaces suggested that Arg-88 is critical for P2-membrane interactions, in addition to the helical lid domain. Negatively charged lipid headgroups stably anchored P2 on the myelin-like bilayer surface. Membrane binding may be accompanied by opening of the P2 ß-barrel structure and ligand exchange with the apposing bilayer. Our results provide an unprecedented view into an ordered, multilayered biomolecular membrane system induced by the presence of a peripheral membrane protein from human myelin. This is an important step toward deciphering the 3D assembly of a mature myelin sheath at the molecular level.


Assuntos
Proteína P2 de Mielina/química , Proteína P2 de Mielina/ultraestrutura , Colesterol/metabolismo , Microscopia Crioeletrônica , Ácidos Graxos/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Proteína P2 de Mielina/genética , Proteína P2 de Mielina/metabolismo , Mutação Puntual , Ligação Proteica , Conformação Proteica , Difração de Raios X
8.
Glycobiology ; 31(12): 1604-1615, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34974622

RESUMO

The oligosaccharyltransferase (OST) is the central enzyme in the N-glycosylation pathway. It transfers a defined oligosaccharide from a lipid-linker onto the asparagine side chain of proteins. The yeast OST consists of eight subunits and exists in two catalytically distinct isoforms that differ in one subunit, Ost3p or Ost6p. The cryo-electron microscopy structure of the Ost6p containing complex was found to be highly similar to the Ost3p containing OST. OST enzymes with altered Ost3p/Ost6p subunits were generated and functionally analyzed. The three C-terminal transmembrane helices were responsible for the higher turnover-rate of the Ost3p vs. the Ost6p containing enzyme in vitro and the more severe hypoglycosylation in Ost3p lacking strains in vivo. Glycosylation of specific OST target sites required the N-terminal thioredoxin domain of Ost3p or Ost6p. This Ost3p/Ost6p dependence was glycosylation site but not protein specific. We concluded that the Ost3p/Ost6p subunits modulate the catalytic activity of OST and provide additional specificity for OST substrate recognition.


Assuntos
Hexosiltransferases , Proteínas de Saccharomyces cerevisiae , Microscopia Crioeletrônica , Hexosiltransferases/metabolismo , Proteínas de Membrana , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(9): E1973-E1982, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440498

RESUMO

The multidrug transporter ABCB1 (P-glycoprotein) is an ATP-binding cassette transporter that has a key role in protecting tissues from toxic insult and contributes to multidrug extrusion from cancer cells. Here, we report the near-atomic resolution cryo-EM structure of nucleotide-free ABCB1 trapped by an engineered disulfide cross-link between the nucleotide-binding domains (NBDs) and bound to the antigen-binding fragment of the human-specific inhibitory antibody UIC2 and to the third-generation ABCB1 inhibitor zosuquidar. Our structure reveals the transporter in an occluded conformation with a central, enclosed, inhibitor-binding pocket lined by residues from all transmembrane (TM) helices of ABCB1. The pocket spans almost the entire width of the lipid membrane and is occupied exclusively by two closely interacting zosuquidar molecules. The external, conformational epitope facilitating UIC2 binding is also visualized, providing a basis for its inhibition of substrate efflux. Additional cryo-EM structures suggest concerted movement of TM helices from both halves of the transporters associated with closing the NBD gap, as well as zosuquidar binding. Our results define distinct recognition interfaces of ABCB1 inhibitory agents, which may be exploited for therapeutic purposes.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Anticorpos/química , Dibenzocicloeptenos/química , Quinolinas/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Animais , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Epitopos/química , Células HEK293 , Humanos , Ligantes , Camundongos , Conformação Molecular , Mutação , Ligação Proteica , Conformação Proteica
10.
J Struct Biol ; 203(2): 120-134, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29689299

RESUMO

2D electron crystallography can be used to study small membrane proteins in their native environment. Obtaining highly ordered 2D crystals is difficult and time-consuming. However, 2D crystals diffracting to only 10-12 Šcan be prepared relatively conveniently in most cases. We have developed image-processing algorithms allowing to generate a high resolution 3D structure from cryo-electron crystallography images of badly ordered crystals. These include movie-mode unbending, refinement over sub-tiles of the images in order to locally refine the sample tilt geometry, implementation of different CTF correction schemes, and an iterative method to apply known constraints in the real and reciprocal space to approximate amplitudes and phases in the so-called missing cone regions. These algorithms applied to a dataset of the potassium channel MloK1 show significant resolution improvements to better than 5 Å.


Assuntos
Cristalografia por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Algoritmos , Microscopia Crioeletrônica/métodos , Software
11.
J Struct Biol ; 197(3): 279-293, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28038834

RESUMO

Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro.


Assuntos
Microscopia Crioeletrônica/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Teóricos , Software
12.
J Biol Chem ; 291(16): 8516-27, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26846854

RESUMO

Multiple neurodegenerative diseases are caused by the aggregation of the human α-Synuclein (α-Syn) protein. α-Syn possesses high structural plasticity and the capability of interacting with membranes. Both features are not only essential for its physiological function but also play a role in the aggregation process. Recently it has been proposed that α-Syn is able to form lipid-protein particles reminiscent of high-density lipoproteins. Here, we present a method to obtain a stable and homogeneous population of nanometer-sized particles composed of α-Syn and anionic phospholipids. These particles are called α-Syn lipoprotein (nano)particles to indicate their relationship to high-density lipoproteins formed by human apolipoproteins in vivo and of in vitro self-assembling phospholipid bilayer nanodiscs. Structural investigations of the α-Syn lipoprotein particles by circular dichroism (CD) and magic angle solid-state nuclear magnetic resonance (MAS SS-NMR) spectroscopy establish that α-Syn adopts a helical secondary structure within these particles. Based on cryo-electron microscopy (cryo-EM) and dynamic light scattering (DLS) α-Syn lipoprotein particles have a defined size with a diameter of ∼23 nm. Chemical cross-linking in combination with solution-state NMR and multiangle static light scattering (MALS) of α-Syn particles reveal a high-order protein-lipid entity composed of ∼8-10 α-Syn molecules. The close resemblance in size between cross-linked in vitro-derived α-Syn lipoprotein particles and a cross-linked species of endogenous α-Syn from SH-SY5Y human neuroblastoma cells indicates a potential functional relevance of α-Syn lipoprotein nanoparticles.


Assuntos
Lipoproteínas HDL/química , Nanopartículas/química , Fosfolipídeos/química , alfa-Sinucleína/química , Linhagem Celular Tumoral , Humanos , Ressonância Magnética Nuclear Biomolecular
13.
Chemphyschem ; 18(19): 2651-2657, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28573816

RESUMO

Nanodiscs offer a very promising tool to incorporate membrane proteins into native-like lipid bilayers and an alternative to liposomes to maintain protein functions and protein-lipid interactions in a soluble nanoscale object. The activity of the incorporated membrane protein appears to be correlated to its dynamics in the lipid bilayer and by protein-lipid interactions. These two parameters depend on the lipid internal dynamics surrounded by the lipid-encircling discoidal scaffold protein that might differ from more unrestricted lipid bilayers observed in vesicles or cellular extracts. A solid-state NMR spectroscopy investigation of lipid internal dynamics and thermotropism in nanodiscs is reported. The gel-to-fluid phase transition is almost abolished for nanodiscs, which maintain lipid fluid properties for a large temperature range. The addition of cholesterol allows fine-tuning of the internal bilayer dynamics by increasing chain ordering. Increased site-specific order parameters along the acyl chain reflect a higher internal ordering in nanodiscs compared with liposomes at room temperature; this is induced by the scaffold protein, which restricts lipid diffusion in the nanodisc area.


Assuntos
Lipídeos/química , Nanoestruturas/química , Termodinâmica , Deutério , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química
14.
J Biol Chem ; 289(14): 9535-46, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24515111

RESUMO

Cyclic nucleotide-modulated ion channels play crucial roles in signal transduction in eukaryotes. The molecular mechanism by which ligand binding leads to channel opening remains poorly understood, due in part to the lack of a robust method for preparing sufficient amounts of purified, stable protein required for structural and biochemical characterization. To overcome this limitation, we designed a stable, highly expressed chimeric ion channel consisting of the transmembrane domains of the well characterized potassium channel KcsA and the cyclic nucleotide-binding domains of the prokaryotic cyclic nucleotide-modulated channel MloK1. This chimera demonstrates KcsA-like pH-sensitive activity which is modulated by cAMP, reminiscent of the dual modulation in hyperpolarization-activated and cyclic nucleotide-gated channels that display voltage-dependent activity that is also modulated by cAMP. Using this chimeric construct, we were able to measure for the first time the binding thermodynamics of cAMP to an intact cyclic nucleotide-modulated ion channel using isothermal titration calorimetry. The energetics of ligand binding to channels reconstituted in lipid bilayers are substantially different from those observed in detergent micelles, suggesting that the conformation of the chimera's transmembrane domain is sensitive to its (lipid or lipid-mimetic) environment and that ligand binding induces conformational changes in the transmembrane domain. Nevertheless, because cAMP on its own does not activate these chimeric channels, cAMP binding likely has a smaller energetic contribution to gating than proton binding suggesting that there is only a small difference in cAMP binding energy between the open and closed states of the channel.


Assuntos
Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Ativação do Canal Iônico , Lipídeos de Membrana/metabolismo , Mesorhizobium/metabolismo , Canais de Potássio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , AMP Cíclico/química , AMP Cíclico/genética , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Mesorhizobium/química , Mesorhizobium/genética , Canais de Potássio/química , Canais de Potássio/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética
15.
J Struct Biol ; 185(3): 267-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24382495

RESUMO

In cases where ultra-flat cryo-preparations of well-ordered two-dimensional (2D) crystals are available, electron crystallography is a powerful method for the determination of the high-resolution structures of membrane and soluble proteins. However, crystal unbending and Fourier-filtering methods in electron crystallography three-dimensional (3D) image processing are generally limited in their performance for 2D crystals that are badly ordered or non-flat. Here we present a single particle image processing approach, which is implemented as an extension of the 2D crystallographic pipeline realized in the 2dx software package, for the determination of high-resolution 3D structures of membrane proteins. The algorithm presented, addresses the low single-to-noise ratio (SNR) of 2D crystal images by exploiting neighborhood correlation between adjacent proteins in the 2D crystal. Compared with conventional single particle processing for randomly oriented particles, the computational costs are greatly reduced due to the crystal-induced limited search space, which allows a much finer search space compared to classical single particle processing. To reduce the considerable computational costs, our software features a hybrid parallelization scheme for multi-CPU clusters and computer with high-end graphic processing units (GPUs). We successfully apply the new refinement method to the structure of the potassium channel MloK1. The calculated 3D reconstruction shows more structural details and contains less noise than the map obtained by conventional Fourier-filtering based processing of the same 2D crystal images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Proteínas de Membrana/metabolismo , Software , Proteínas de Membrana/química
16.
J Struct Biol ; 186(2): 302-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24680783

RESUMO

The introduction of direct electron detectors (DED) to cryo-electron microscopy has tremendously increased the signal-to-noise ratio (SNR) and quality of the recorded images. We discuss the optimal use of DEDs for cryo-electron crystallography, introduce a new automatic image processing pipeline, and demonstrate the vast improvement in the resolution achieved by the use of both together, especially for highly tilted samples. The new processing pipeline (now included in the software package 2dx) exploits the high SNR and frame readout frequency of DEDs to automatically correct for beam-induced sample movement, and reliably processes individual crystal images without human interaction as data are being acquired. A new graphical user interface (GUI) condenses all information required for quality assessment in one window, allowing the imaging conditions to be verified and adjusted during the data collection session. With this new pipeline an automatically generated unit cell projection map of each recorded 2D crystal is available less than 5 min after the image was recorded. The entire processing procedure yielded a three-dimensional reconstruction of the 2D-crystallized ion-channel membrane protein MloK1 with a much-improved resolution of 5Å in-plane and 7Å in the z-direction, within 2 days of data acquisition and simultaneous processing. The results obtained are superior to those delivered by conventional photographic film-based methodology of the same sample, and demonstrate the importance of drift-correction.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia/métodos , Ensaios de Triagem em Larga Escala/métodos , Modelos Moleculares , Canais de Potássio/química , Software , Microscopia Crioeletrônica/instrumentação , Humanos , Imageamento Tridimensional , Canais de Potássio/ultraestrutura , Interface Usuário-Computador
17.
Biochim Biophys Acta ; 1818(3): 839-50, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22192778

RESUMO

Among the thirteen human aquaporins (AQP0-12), the primary structure of AQP8 is unique. By sequence alignment it is evident that mammalian AQP8s form a separate subfamily distinct from the other mammalian aquaporins. The constriction region of the pore determining the solute specificity deviates in AQP8 making it permeable to both ammonia and H(2)O(2) in addition to water. To better understand the selectivity and gating mechanism of aquaporins, high-resolution structures are necessary. So far, the structure of three human aquaporins (HsAQP1, HsAQP4, and HsAQP5) have been solved at atomic resolution. For mammalian aquaporins in general, high-resolution structures are only available for those belonging to the water-specific subfamily (including HsAQP1, HsAQP4 and HsAQP5). Thus, it is of interest to solve structures of other aquaporin subfamily members with different solute specificities. To achieve this the aquaporins need to be overexpressed heterologously and purified. Here we use the methylotrophic yeast Pichia pastoris as a host for the overexpression. A wide screen of different detergents and detergent-lipid combinations resulted in the solubilization of functional human AQP8 protein and in well-ordered 2D crystals. It also became evident that removal of amino acids constituting affinity tags was crucial to achieve highly ordered 2D crystals diffracting to 3Å.


Assuntos
Aquaporinas/química , Aquaporinas/biossíntese , Aquaporinas/genética , Aquaporinas/isolamento & purificação , Cristalografia por Raios X , Detergentes/química , Expressão Gênica , Humanos , Lipídeos/química , Pichia/genética , Pichia/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Relação Estrutura-Atividade
18.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 508-517, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204817

RESUMO

Gram-negative bacteria such as Aeromonas and Yersinia spp. have developed mechanisms to inhibit the immune defense of their host. Effector proteins are directly injected into the host cytoplasm from the bacterial cytosol via type III secretion systems (T3SSs), where they modulate the cytoskeleton and signaling of the cell. Assembly of, and secretion via, T3SSs is tightly regulated by a number of bacterial proteins, including SctX (AscX in Aeromonas), the secretion of which is essential for T3SS function. Here, crystal structures of AscX in complex with SctY chaperones from Yersinia or Photorhabdus spp. carrying homologous T3SSs are described. There are crystal pathologies in all cases, with one crystal form diffracting anisotropically and the other two exhibiting strong pseudotranslation. The new structures reveal that the positioning of the substrate is very similar on different chaperones. However, the two C-terminal SctX helices that cap the N-terminal tetratricopeptide repeat of SctY shift and tilt depending on the identity of the chaperone. Moreover, the C-terminus of the α3 helix of AscX exhibits an unprecedented kink in two of the structures. In previous structures, the C-terminus of SctX protrudes beyond the chaperone as a straight helix: a conformation that is required for binding to the nonameric export gate SctV but that is unfavorable for binary SctX-SctY complexes due to the hydrophobicity of helix α3 of SctX. A kink in helix α3 may allow the chaperone to shield the hydrophobic C-terminus of SctX in solution.


Assuntos
Proteínas de Bactérias , Chaperonas Moleculares , Ligação Proteica , Chaperonas Moleculares/química , Proteínas de Bactérias/química , Yersinia/metabolismo , Interações Hidrofóbicas e Hidrofílicas
19.
Res Involv Engagem ; 9(1): 54, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464394

RESUMO

BACKGROUND: In 2019, our interdisciplinary team of researchers, family members, and youth co-designed four simulation training videos and accompanying facilitation resources to prepare youth, family members, trainees, and researchers to build the knowledge and skills to engage in patient-oriented research (POR) authentically and meaningfully. Videos covered challenges in aspects of the research process including (1) forming a project team; (2) identifying project objectives and priorities; (3) agreeing on results; and (4) carrying out knowledge translation. METHODS: The purpose of the study was to deliver four simulation training videos across 2 two-hour facilitated workshops with researchers, trainees, and family partners. We evaluated whether the training videos and facilitated discussion of the simulations helped to improve knowledge and attitudes about authentic and meaningful partnership in research and self-perceived ability to engage in POR. An explanatory sequential two-phase mixed methods design was used. Phase 1 (quantitative) included two training workshops and a pre/post-training survey. Phase 2 (qualitative) included two qualitative focus groups. Results of each phase were analyzed separately and then combined during interpretation. RESULTS: Sixteen individuals (including researchers/research staff, trainees, family members, clinicians) took part in this research study. Overall, participants were highly receptive to the training, providing high scores on measures of acceptability, appropriateness, and feasibility. While the training videos and facilitated discussion of the simulations were found to increase participants' knowledge and ability to engage in authentic and meaningful POR, we found no significant change in attitude or intent. Recommendations about the simulation content and delivery were provided to inform for future use. CONCLUSIONS: The simulations were found to be a positive and impactful way for collaborative research teams to build knowledge and ability to engage in authentic and meaningful POR. Recommendations for future work include covering different content areas with varying levels of nuance; and offering the training to stakeholders in a variety of roles, such as those higher-ranked academic positions.


In 2019, our team of researchers, family members, and youth worked together to design and develop four digitally recorded simulation videos that can be used to train youth, caregivers/families, trainees, and researchers to engage with each other in research so that all parties feel supported and valued. This paper describes how the four simulation videos were packaged in the training and then delivered to 16 participants (researchers, trainees, and caregivers/families). We used multiple ways to evaluate the videos and training, including a survey before and after the training, focus groups with participants after the training, and written reflections shared by the training facilitators after the training was finished. We found that the simulation videos increased participants' knowledge on engagement and their self-reported ability to engage in authentic and meaningful patient-oriented research. Participants rated their belief in engagement and their intent to engage in collaborative research highly at the pre-test and this remained consistent at the post-test. Participants liked that the simulations focused on challenges in research engagement and that the training was offered to researchers and family partners together. They provided valuable feedback on what we should change about the simulations, including the content, which should have less exaggerated lessons and to add more topics. They also suggested it would be helpful if stakeholders other than just the research team complete the training in the future, especially those who are in higher positions of academic power.

20.
Nat Commun ; 14(1): 5774, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723174

RESUMO

The organic anion transporting polypeptides OATP1B1 and OATP1B3 are membrane proteins that mediate uptake of drugs into the liver for subsequent conjugation and biliary excretion, a key step in drug elimination from the human body. Polymorphic variants of these transporters can cause reduced drug clearance and adverse drug effects such as statin-induced rhabdomyolysis, and co-administration of OATP substrates can lead to damaging drug-drug interaction. Despite their clinical relevance in drug disposition and pharmacokinetics, the structure and mechanism of OATPs are unknown. Here we present cryo-EM structures of human OATP1B1 and OATP1B3 bound to synthetic Fab fragments and in functionally distinct states. A single estrone-3-sulfate molecule is bound in a pocket located in the C-terminal half of OATP1B1. The shape and chemical nature of the pocket rationalize the preference for diverse organic anions and allow in silico docking of statins. The structure of OATP1B3 is determined in a drug-free state but reveals a bicarbonate molecule bound to the conserved signature motif and a histidine residue that is prevalent in OATPs exhibiting pH-dependent activity.


Assuntos
Transportador 1 de Ânion Orgânico Específico do Fígado , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Humanos , Transporte Biológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Inibidores de Hidroximetilglutaril-CoA Redutases , Proteínas de Membrana Transportadoras , Transportador 1 de Ânion Orgânico Específico do Fígado/química , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA