Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 24(13): e202200727, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36949028

RESUMO

Sequence-based protein design approaches are being adopted to generate highly functional enzymes; however, screening the enzymes remains a time-consuming task. In this study, by analyzing the enzymatic properties of four ancestral meso-2,6-diaminopimelate dehydrogenases (AncDAPDHs), AncDAPDH-N1, -N2, -N3, and -N4, we attempted to define a new index parameter that is helpful for efficiently screening the enzymes. Biochemical and thermodynamic analyses indicated that only AncDAPDH-N4 exhibited greater thermal stability than and activity similar to those of native DAPDHs. Structural and sequence comparisons between DAPDH from Corynebacterium glutamicum (CgDAPDH) and the AncDAPDHs suggested that "quality of mutations" is a potential index parameter. In fact, the mutations introduced from CgDAPDH to AncDAPDH-N4 correlated highly with the mutations accumulated during the evolution process from mesophiles to thermophiles. These results suggest that, although there are several exceptions, the correlation coefficient can be used as an index parameter for screening high-functioning enzymes from sequence data.


Assuntos
Especificidade por Substrato , Modelos Moleculares , Termodinâmica
2.
Chembiochem ; 23(8): e202100447, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545992

RESUMO

Glutamate decarboxylase (GAD) catalyses the decarboxylation of L-glutamate to gamma-aminobutyric acid (GABA). Improvement of the enzymatic properties of GAD is important for the low-cost synthesis of GABA. In this study, utilizing sequences of enzymes homologous with GAD from lactic acid bacteria, highly mutated GADs were designed using sequence-based protein design methods. Two mutated GADs, FcGAD and AncGAD, generated by full-consensus design and ancestral sequence reconstruction, had more desirable properties than native GADs. With respect to thermal stability, the half-life of the designed GADs was about 10 °C higher than that of native GAD. The productivity of FcGAD was considerably higher than those of known GADs; more than 250 mg/L of purified enzyme could be produced in the E. coli expression system. In a production test using 26.4 g of l-glutamate and 3.0 g of resting cells, 17.2 g of GABA could be prepared within one hour, without purification, in a one-pot synthesis.


Assuntos
Glutamato Descarboxilase , Ácido Glutâmico , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico
3.
Biochemistry ; 60(29): 2309-2319, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34254784

RESUMO

Consensus design (CD) is a representative sequence-based protein design method that enables the design of highly functional proteins by analyzing vast amounts of protein sequence data. This study proposes a partial consensus design (PCD) of a protein as a derivative approach of CD. The method replaces the target protein sequence with a consensus sequence in a secondary-structure-dependent manner (i.e., regionally dependent and divided into α-helix, ß-sheet, and loop regions). In this study, we generated several artificial partial consensus l-threonine 3-dehydrogenases (PcTDHs) by PCD using the TDH from Cupriavidus necator (CnTDH) as a target protein. Structural and functional analysis of PcTDHs suggested that thermostability would be independently improved when consensus mutations are introduced into the loop region of TDHs. On the other hand, enzyme kinetic parameters (kcat/Km) and average productivity would be synergistically enhanced by changing the combination of the mutations-replacement of one region of CnTDH with a consensus sequence provided only negative effects, but the negative effects were nullified when the two regions were replaced simultaneously. Taken together, we propose the hypothesis that there are protein regions that encode individual protein properties, such as thermostability and activity, and that the introduction of consensus mutations into these regions could additively or synergistically modify their functions.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Cupriavidus necator/química , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Sequência Consenso , Cristalografia por Raios X , Cupriavidus necator/genética , Modelos Moleculares , Mutagênese , Mutação , Engenharia de Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Temperatura
4.
Commun Chem ; 3(1): 181, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36703379

RESUMO

L-amino acid oxidases (LAAOs) can be applied to convert racemic amino acids to D-isomers, which are potential precursors of pharmaceuticals. However, this application is hampered by the lack of available stable and structure-determined LAAOs. In this study, we attempt to address this limitation by utilizing two ancestral LAAOs: AncLAAO-N4 and AncLAAO-N5. AncLAAO-N4 has the highest thermal and temporal stabilities among the designed LAAOs that can be used for deracemization and stereoinversion. AncLAAO-N5 can provide X-ray crystal structures, which are helpful to reveal substrate recognition and reaction mechanisms of LAAOs at the molecular level. Next, we attempted to improve activity of AncLAAO-N4 toward L-Val through a semi-rational protein engineering method. Three variants with enhanced activity toward L-Val were obtained. Taken together, we believe that the activity and substrate selectivity of AncLAAOs give them the potential to be key enzymes in various chemoenzymatic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA