Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phycol ; 57(4): 1223-1233, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33721355

RESUMO

Here, we present new transcriptome sequencing data from seven species of Dasycladales (Ulvophyceae) and a phylogenomic analysis of the Chlorophyta with a particular focus on Ulvophyceae. We have focused on a broad selection of green algal groups and carefully selected genes suitable for reconstructing deep eukaryote evolutionary histories. Increasing the taxon sampling of Dasycladales restructures the Ulvophyceae by identifying Dasycladales as closely related to Scotinosphaerales and Oltmannsiellopsidales. Contrary to previous studies, we do not find support for a close relationship between Dasycladales and a group with Cladophorales and Trentepohliales. Instead, the latter group is sister to the remainder of the Ulvophyceae. Furthermore, our analyses show high and consistent statistical support for a sister relationship between Bryopsidales and Chlorophyceae in trees generated with both homogeneous and heterogeneous (heterotachy) evolutionary models. Our study provides a new framework for interpreting the evolutionary history of Ulvophyceae and the evolution of cellular morphologies.


Assuntos
Clorofíceas , Clorófitas , Clorófitas/genética , Eucariotos , Evolução Molecular , Filogenia
2.
FEMS Microbiol Ecol ; 97(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33547899

RESUMO

Soil depth represents a strong physiochemical gradient that greatly affects soil-dwelling microorganisms. Fungal communities are typically structured by soil depth, but how other microorganisms are structured is less known. Here, we tested whether depth-dependent variation in soil chemistry affects the distribution and co-occurrence patterns of soil microbial communities. This was investigated by DNA metabarcoding in conjunction with network analyses of bacteria, fungi, as well as other micro-eukaryotes, sampled in four different soil depths in Norwegian birch forests. Strong compositional turnover in microbial assemblages with soil depth was detected for all organismal groups. Significantly greater microbial diversity and fungal biomass appeared in the nutrient-rich organic layer, with sharp decrease towards the less nutrient-rich mineral zones. The proportions of copiotrophic bacteria, Arthropoda and Apicomplexa were markedly higher in the organic layer, while patterns were opposite for oligotrophic bacteria, Cercozoa, Ascomycota and ectomycorrhizal fungi. Network analyses indicated more intensive inter-kingdom co-occurrence patterns in the upper mineral layer (0-5 cm) compared to the above organic and the lower mineral soil, signifying substantial influence of soil depth on biotic interactions. This study supports the view that different microbial groups are adapted to different forest soil strata, with varying level of interactions along the depth gradient.


Assuntos
Micobioma , Solo , Florestas , Fungos/genética , Microbiologia do Solo
3.
Front Microbiol ; 10: 2708, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824470

RESUMO

Extracellular vesicles secreted by Gram-negative bacteria have proven to be important in bacterial defense, communication and host-pathogen relationships. They resemble smaller versions of the bacterial mother cell, with similar contents of proteins, LPS, DNA, and RNA. Vesicles can elicit a protective immune response in a range of hosts, and as vaccine candidates, it is of interest to properly characterize their cargo. Genetic sequencing data is already available for vesicles from several bacterial strains, but it is not yet clear how the genetic makeup of vesicles differ from that of their parent cells, and which properties may characterize enriched genetic material. The present study provides evidence for DNA inside vesicles from Vibrio cholerae O395, and key characteristics of their genetic and proteomic content are compared to that of whole cells. DNA analysis reveals enrichment of fragments containing ToxR binding sites, as well as a positive correlation between AT-content and enrichment. Some mRNAs were highly enriched in the vesicle fraction, such as membrane protein genes ompV, ompK, and ompU, DNA-binding protein genes hupA, hupB, ihfB, fis, and ssb, and a negative correlation was found between mRNA enrichment and transcript length, suggesting mRNA inclusion in vesicles may be a size-dependent process. Certain non-coding and functional RNAs were found to be enriched, such as VrrA, GcvB, tmRNA, RNase P, CsrB2, and CsrB3. Mass spectrometry revealed enrichment of outer membrane proteins, known virulence factors, phage components, flagella and extracellular proteins in the vesicle fraction, and a low, negative correlation was found between transcript-, and protein enrichment. This result opposes the hypothesis that a significant degree of protein translation occurs in vesicles after budding. The abundance of viral-, and flagellar proteins in the vesicle fraction underlines the importance of purification during vesicle isolation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA