Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med ; 20(1): 16, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35057796

RESUMO

BACKGROUND: Surgical resection followed by chemo-radiation postpones glioblastoma (GBM) progression and extends patient survival, but these tumours eventually recur. Multimodal treatment plans combining intraoperative techniques that maximise tumour excision with therapies aiming to remodel the immunologically cold GBM microenvironment could improve patients' outcomes. Herein, we report that targeted photoimmunotherapy (PIT) not only helps to define tumour location and margins but additionally promotes activation of anti-GBM T cell response. METHODS: EGFR-specific affibody molecule (ZEGFR:03115) was conjugated to IR700. The response to ZEGFR:03115-IR700-PIT was investigated in vitro and in vivo in GBM cell lines and xenograft model. To determine the tumour-specific immune response post-PIT, a syngeneic GBM model was used. RESULTS: In vitro findings confirmed the ability of ZEGFR:03115-IR700 to produce reactive oxygen species upon light irradiation. ZEGFR:03115-IR700-PIT promoted immunogenic cell death that triggered the release of damage-associated molecular patterns (DAMPs) (calreticulin, ATP, HSP70/90, and HMGB1) into the medium, leading to dendritic cell maturation. In vivo, therapeutic response to light-activated conjugate was observed in brain tumours as early as 1 h post-irradiation. Staining of the brain sections showed reduced cell proliferation, tumour necrosis, and microhaemorrhage within PIT-treated tumours that corroborated MRI T2*w acquisitions. Additionally, enhanced immunological response post-PIT resulted in the attraction and activation of T cells in mice bearing murine GBM brain tumours. CONCLUSIONS: Our data underline the potential of ZEGFR:03115-IR700 to accurately visualise EGFR-positive brain tumours and to destroy tumour cells post-conjugate irradiation turning an immunosuppressive tumour environment into an immune-vulnerable one.


Assuntos
Glioblastoma , Animais , Autoanticorpos , Linhagem Celular Tumoral , Receptores ErbB , Glioblastoma/terapia , Humanos , Imunidade , Imunoterapia , Camundongos , Recidiva Local de Neoplasia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163938

RESUMO

A large number of applications for fibroblast activation protein inhibitors (FAPI)-based PET agents have been evaluated in conditions ranging from cancer to non-malignant diseases such as myocardial infarction. In particular, 68Ga-FAPI-46 was reported to have a high specificity and affinity for FAP-expressing cells, a fast and high accumulation in tumor lesions/injuries together with a fast body clearance when investigated in vivo. Due to the increasing interest in the use of the agent both preclinically and clinically, we developed an automated synthesis for the production of 68Ga-FAPI-46 on a Trasis AiO platform. The new synthetic procedure, which included the processing of the generator eluate using a strong cation exchange resin and a final purification step through an HLB followed by a QMA cartridge, yielded 68Ga-FAPI-46 with high radiochemical purity (>98%) and apparent molar activity (271.1 ± 105.6 MBq/nmol). Additionally, the in vitro and in vivo properties of the product were assessed on glioblastoma cells and mouse model. Although developed for the preparation of 68Ga-FAPI-46 for preclinical use, our method can be adapted for clinical production as a reliable alternative to the manual (i.e., cold kit) or modular systems preparations already described in the literature.


Assuntos
Glioblastoma/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Quinolinas/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Animais , Apoptose , Proliferação de Células , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Radioquímica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Molecules ; 25(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235296

RESUMO

Site-selective bioconjugation of cysteine-containing peptides and proteins is currently achieved via a maleimide-thiol reaction (Michael addition). When maleimide-functionalized chelators are used and the resulting bioconjugates are subsequently radiolabeled, instability has been observed both during radiosynthesis and post-injection in vivo, reducing radiochemical yield and negatively impacting performance. Recently, a phenyloxadiazolyl methylsulfone derivative (PODS) was proposed as an alternative to maleimide for the site-selective conjugation and radiolabeling of proteins, demonstrating improved in vitro stability and in vivo performance. Therefore, we have synthesized two novel PODS-bearing bifunctional chelators (NOTA-PODS and NODAGA-PODS) and attached them to the EGFR-targeting affibody molecule ZEGFR:03115. After radiolabeling with the aluminum fluoride complex ([18F]AlF), both conjugates showed good stability in murine serum. When injected in high EGFR-expressing tumor-bearing mice, [18F]AlF-NOTA-PODS-ZEGFR:03115 and [18F]AlF-NODAGA-PODS-ZEGFR:03115 showed similar pharmacokinetics and a specific tumor uptake of 14.1 ± 5.3% and 16.7 ± 4.5% ID/g at 1 h post-injection, respectively. The current results are encouraging for using PODS as an alternative to maleimide-based thiol-selective bioconjugation reactions.


Assuntos
Acetatos/química , Glioblastoma/diagnóstico por imagem , Compostos Heterocíclicos com 1 Anel/química , Oxidiazóis/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Radioisótopos de Flúor/química , Xenoenxertos , Imunoconjugados/química , Maleimidas/química , Camundongos , Camundongos Nus , Neuroglia/metabolismo , Neuroglia/patologia , Compostos de Sulfidrila/química
4.
Int J Cancer ; 142(11): 2363-2374, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29313975

RESUMO

Glioblastomas (GBMs) are high-grade brain tumors, differentially driven by alterations (amplification, deletion or missense mutations) in the epidermal growth factor receptor (EGFR), that carry a poor prognosis of just 12-15 months following standard therapy. A combination of interventions targeting tumor-specific cell surface regulators along with convergent downstream signaling pathways may enhance treatment efficacy. Against this background, we investigated a novel photoimmunotherapy approach combining the cytotoxicity of photodynamic therapy with the specificity of immunotherapy. An EGFR-specific affibody (ZEGFR:03115 ) was conjugated to the phthalocyanine dye, IR700DX, which when excited with near-infrared light produces a cytotoxic response. ZEGFR:03115 -IR700DX EGFR-specific binding was confirmed by flow cytometry and confocal microscopy. The conjugate showed effective targeting of EGFR positive GBM cells in the brain. The therapeutic potential of the conjugate was assessed both in vitro, in GBM cell lines and spheroids by the CellTiter-Glo® assay, and in vivo using subcutaneous U87-MGvIII xenografts. In addition, mice were imaged pre- and post-PIT using the IVIS/Spectrum/CT to monitor treatment response. Binding of the conjugate correlated to the level of EGFR expression in GBM cell lines. The cell proliferation assay revealed a receptor-dependent response between the tested cell lines. Inhibition of EGFRvIII+ve tumor growth was observed following administration of the immunoconjugate and irradiation. Importantly, this response was not seen in control tumors. In conclusion, the ZEGFR:03115 -IR700DX showed specific uptake in vitro and enabled imaging of EGFR expression in the orthotopic brain tumor model. Moreover, the proof-of-concept in vivo PIT study demonstrated therapeutic efficacy of the conjugate in subcutaneous glioma xenografts.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Imunoconjugados/farmacologia , Imunoterapia , Fototerapia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imunoterapia/métodos , Camundongos , Imagem Molecular , Fototerapia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Org Biomol Chem ; 16(16): 2986-2996, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29629716

RESUMO

Trifluoromethyl groups are widespread in medicinal chemistry, yet there are limited 18F-radiochemistry techniques available for the production of the complementary PET agents. Herein, we report the first radiosynthesis of the anticancer nucleoside analogue trifluridine, using a fully automated, clinically-applicable 18F-trifluoromethylation procedure. [18F]Trifluridine was obtained after two synthetic steps in <2 hours. The isolated radiochemical yield was 3% ± 0.44 (n = 5), with a radiochemical purity >99%, and a molar activity of 0.4 GBq µmol-1 ± 0.05. Biodistribution and PET-imaging data using HCT116 tumour-bearing mice showed a 2.5 %ID g-1 tumour uptake of [18F]trifluridine at 60 minutes post-injection, with bone uptake becoming a prominent feature thereafter. In vivo metabolite analysis of selected tissues revealed the presence of the original radiolabelled nucleoside analogue, together with deglycosylated and phosphorylated [18F]trifluridine as the main metabolites. Our findings suggest a potential role for [18F]trifluridine as a PET radiotracer for elucidation of drug mechanism of action.

7.
Bioconjug Chem ; 27(8): 1839-49, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27357023

RESUMO

The human epidermal growth factor receptor 3 (HER3) is overexpressed in several cancers, being linked to a more resistant phenotype and hence leading to poor patient prognosis. Imaging HER3 is challenging owing to the modest receptor number (<50000 receptors/cell) in overexpressing cancer cells. Therefore, to image HER3 in vivo, high target affinity PET probes need to be developed. This work describes two different [(18)F]AlF radiolabeling strategies of the ZHER3:8698 affibody molecule specifically targeting HER3. The one-pot radiolabeling of ZHER3:8698 performed at 100 °C and using 1,4,7-triazanonane-1,4,7-triacetate (NOTA) as chelator resulted in radiolabeled products with variable purity attributed to radioconjugate thermolysis. An alternative approach based on the inverse electron demand Diels-Alder (IEDDA) reaction between a novel tetrazine functionalized 1,4,7-triazacyclononane-1,4-diacetate (NODA) chelator and the trans-cyclooctene (TCO) functionalized affibody molecule was also investigated. This method enabled the radiolabeling of the protein at room temperature. The [(18)F]AlF-NOTA-ZHER3:8698 and [(18)F]AlF-NODA-ZHER3:8698 conjugates showed a specific uptake at 1 h after injection in high HER3-expressing MCF-7 tumors of 4.36 ± 0.92% ID/g and 4.96 ± 0.65% ID/g, respectively. The current results are encouraging for further investigation of [(18)F]AlF-NOTA-ZHER3:8698 as a HER3 imaging agent.


Assuntos
Alumínio/química , Anticorpos Monoclonais/química , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-3/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Transformação Celular Neoplásica , Feminino , Compostos Heterocíclicos/química , Compostos Heterocíclicos com 1 Anel , Humanos , Marcação por Isótopo , Células MCF-7 , Camundongos , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica
8.
Cancers (Basel) ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37370741

RESUMO

There is no established method to assess the PD-L1 expression in brain tumours. Therefore, we investigated the suitability of affibody molecule (ZPD-L1) radiolabelled with F-18 (Al18F) and Ga-68 to measure the expression of PD-L1 in xenograft mouse models of GBM. Mice bearing subcutaneous and orthotopic tumours were imaged 1 h post-radioconjugate administration. Ex vivo biodistribution studies and immunohistochemistry (IHC) staining were performed. Tumoural PD-L1 expression and CD4+/CD8+ tumour-infiltrating lymphocytes were evaluated in human GBM specimens. ZPD-L1 was radiolabelled with radiochemical yields of 32.2 ± 4.4% (F-18) and 73.3 ± 1.8% (Ga-68). The cell-associated radioactivity in vitro was consistent with PD-L1 expression levels assessed with flow cytometry. In vivo imaging demonstrated that 18F-AlF-NOTA-ZPD-L1 can distinguish between PD-L1 high-expressing tumours (U87-MGvIII) and PD-L1-negative ones (H292PD-L1Ko). The radioconjugate was quickly cleared from the blood and normal tissues, allowing for high-contrast images of brain tumours as early as 1 h post-injection. 68Ga-NOTA-ZPD-L1 showed heterogeneous and diffuse accumulation that corresponded to the extensively infiltrating GCGR-E55 tumours involving contiguous lobes of the brain. Lastly, 39% of analysed GBM patient samples showed PD-L1+ staining of tumour cells that was associated with elevated levels of CD4+ and CD8+ lymphocytes. Our results suggest that the investigated radioconjugates are very promising agents with the potential to facilitate the future design of treatment regimens for GBM patients.

9.
Cancer Res ; 83(12): 2077-2089, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934744

RESUMO

Fluorescence-guided surgery is set to play a pivotal role in the intraoperative management of pediatric tumors. Shortwave infrared imaging (SWIR) has advantages over conventional near-infrared I (NIR-I) imaging with reduced tissue scattering and autofluorescence. Here, two NIR-I dyes (IRDye800CW and IR12), with long tails emitting in the SWIR range, were conjugated with a clinical-grade anti-GD2 monoclonal antibody (dinutuximab-beta) to compare NIR-I and SWIR imaging for neuroblastoma surgery. A first-of-its-kind multispectral NIR-I/SWIR fluorescence imaging device was constructed to allow an objective comparison between the two imaging windows. Conjugates were first characterized in vitro. Tissue-mimicking phantoms, imaging specimens of known geometric and material composition, were used to assess the sensitivity and depth penetration of the NIR-I/SWIR device, showing a minimum detectable volume of ∼0.9 mm3 and depth penetration up to 3 mm. In vivo, fluorescence imaging using the NIR-I/SWIR device showed a high tumor-to-background ratio (TBR) for both dyes, with anti-GD2-IR800 being significantly brighter than anti-GD2-IR12. Crucially, the system enabled higher TBR at SWIR wavelengths than at NIR-I wavelengths, verifying SWIR imaging enables high-contrast delineation of tumor margins. This work demonstrates that by combining the high specificity of anti-GD2 antibodies with the availability and translatability of existing NIR-I dyes, along with the advantages of SWIR in terms of depth and tumor signal-to-background ratio, GD2-targeted NIR-I/SWIR-guided surgery could improve the treatment of patients with neuroblastoma, warranting investigation in future clinical trials. SIGNIFICANCE: Multispectral near-infrared I/shortwave infrared fluorescence imaging is a versatile system enabling high tumor-to-background signal for safer and more complete resection of pediatric tumors during surgery.


Assuntos
Antineoplásicos , Neuroblastoma , Criança , Humanos , Imagem Óptica/métodos , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/cirurgia , Imagens de Fantasmas , Corantes , Corantes Fluorescentes
10.
Adv Mater ; : e2300413, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36905683

RESUMO

Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.

11.
Tumour Biol ; 33(3): 629-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22446937

RESUMO

Nuclear medicine is a multidisciplinary field that develops and uses instrumentation and tracers (radiopharmaceuticals) to study physiological processes and noninvasively diagnose, stage, and treat diseases. Particularly, it offers a unique means to study cancer biology in vivo and to optimize cancer therapy for individual patients. A tracer is either a radionuclide alone, such as iodine-131 or a radiolabel in a carrier molecule such as (18)F in fluorodeoxyglucose ((18)F-FDG), or other feasible radionuclide attached to a drug, a protein, or a peptide, which when introduced into the body, would accumulate in the tissue of interest. Nuclear medicine imaging, including single-photon emission computer tomography and positron emission tomography, can provide important quantitative and functional information about normal tissues or disease conditions, in contrast to conventional, anatomical imaging techniques such as ultrasound, computed tomography, or magnetic resonance imaging. For treatment, tumor-targeting agents, conjugated with therapeutic radionuclides, may be used to deposit lethal radiation at tumor sites. This review outlines the role of nuclear medicine in modern cancer therapy.


Assuntos
Neoplasias/radioterapia , Medicina Nuclear , Ensaios Clínicos Fase II como Assunto , História do Século XX , Humanos , Imagem Molecular , Neoplasias/diagnóstico por imagem , Medicina Nuclear/história , Traçadores Radioativos , Radioisótopos/uso terapêutico , Tomografia Computadorizada de Emissão
12.
BMC Cancer ; 12: 345, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22873679

RESUMO

BACKGROUND: Near infrared (NIR) photoimmunotherapy (PIT) is a new type of cancer treatment based on a monoclonal antibody (mAb)-NIR phthalocyanine dye, (IR700) conjugate. In vitro cancer-specific cell death occurs during NIR light exposure in cells previously incubated with mAb-IR700 conjugates. However, documenting rapid cell death in vivo is more difficult. METHODS: A luciferase-transfected breast cancer cell (epidermal growth factor receptor+, MDA-MB-468luc cells) was produced and used for both in vitro and in vivo experiments for monitoring the cell killing effect of PIT. After validation of cytotoxicity with NIR exposure up to 8 J/cm2in vitro, we employed an orthotopic breast cancer model of bilateral MDA-MB-468luc tumors in female athymic mice, which subsequently received a panitumumab-IR700 conjugate in vivo. One side was used as a control, while the other was treated with NIR light of dose ranging from 50 to 150 J/cm2. Bioluminescence imaging (BLI) was performed before and after PIT. RESULTS: Dose-dependent cell killing and regrowth was successfully monitored by the BLI signal in vitro. Although tumor sizes were unchanged, BLI signals decreased by >95% immediately after PIT in vivo when light intensity was high (>100 J/cm2), however, in mice receiving lower intensity NIR (50 J/cm2), tumors recurred with gradually increasing BLI signal. CONCLUSION: PIT induced massive cell death of targeted tumor cells immediately after exposure of NIR light that was demonstrated with BLI in vivo.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/farmacologia , Imunoterapia/métodos , Indóis/farmacologia , Fotoquimioterapia/métodos , Radiossensibilizantes/farmacologia , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Sistemas de Liberação de Medicamentos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Isoindóis , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Necrose , Panitumumabe , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Onco Targets Ther ; 15: 437-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509452

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system tumour in adults. It has extremely poor prognosis since the current standard of care, comprising of gross total resection and temozolomide (TMZ) chemoradiotherapy, prolongs survival, but does not provide a durable response. To a certain extent, this is due to GBM's heterogeneous, hostile and cold tumour microenvironment (TME) and the unique ability of GBM to overcome the host's immune responses. Therefore, there is an urgent need to develop more effective therapeutic approaches. This review provides critical insights from completed and ongoing clinical studies investigating novel immunotherapy strategies for GBM patients, ranging from the use of immune checkpoint inhibitors in different settings of GBM treatment to novel combinatorial therapies. In particular, we discuss how treatment regimens based on single antigen peptide vaccines evolved into fully personalised, polyvalent cell-based vaccines, CAR-T cell, and viral or gene therapies. Furthermore, the results of the most influential clinical trials and a selection of innovative preclinical studies aimed at activating the immunologically cold GBM microenvironment are reviewed.

14.
Eur J Nucl Med Mol Imaging ; 38(11): 1967-76, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21748382

RESUMO

PURPOSE: Overexpression of HER2/neu in breast cancer is correlated with a poor prognosis. It may vary between primary tumors and metastatic lesions and change during the treatment. Therefore, there is a need for a new means to assess HER2/neu expression in vivo. In this work, we used (68)Ga-labeled DOTA-Z(HER2:2891)-Affibody to monitor HER2/neu expression in a panel of breast cancer xenografts. METHODS: DOTA-Z(HER2:2891)-Affibody molecules were labeled with (68)Ga. In vitro binding was characterized by a receptor saturation assay. Biodistribution and PET imaging studies were conducted in athymic nude mice bearing subcutaneous human breast cancer tumors with three different levels of HER2/neu expression. Nonspecific uptake was analyzed using non-HER2-specific Affibody molecules. Signal detected by PET was compared with ex vivo assessment of the tracer uptake and HER2/neu expression. RESULTS: The (68)Ga-DOTA-Z(HER2:2891)-Affibody probe showed high binding affinity to MDA-MB-361 cells (K (D) = 1.4 ± 0.19 nM). In vivo biodistribution and PET imaging studies demonstrated high radioactivity uptake in HER2/neu-positive tumors. Tracer was eliminated quickly from the blood and normal tissues, resulting in high tumor-to-blood ratios. The highest concentration of radioactivity in normal tissue was seen in the kidneys (227 ± 14%ID/g). High-contrast PET images of HER2/neu-overexpressing tumors were recorded as soon as 1 h after tracer injection. A good correlation was observed between PET imaging, biodistribution estimates of tumor tracer concentration, and the receptor expression. CONCLUSION: These results suggest that PET imaging using (68)Ga-DOTA-Z(HER2:2891)-Affibody is sensitive enough to detect different levels of HER2/neu expression in vivo.


Assuntos
Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos com 1 Anel/química , Tomografia por Emissão de Pósitrons/métodos , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/química , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Radioisótopos de Gálio , Humanos , Camundongos , Imagem Multimodal , Proteínas Recombinantes de Fusão/sangue , Proteínas Recombinantes de Fusão/farmacocinética , Tomografia Computadorizada por Raios X
15.
Mol Biol Rep ; 38(7): 4237-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21755295

RESUMO

Increasing evidence suggests that Human epidermal growth factor receptor 2 (HER2/neu) is involved in progression of prostate cancer. Recently, sarcosine was reported to be highly increased during prostate cancer progression, and exogenous sarcosine induces an invasive phenotype in benign prostate epithelial cells. The aim of this work was to investigate the effect of sarcosine on HER2/neu expression in prostate cancer cell lines LNCaP (androgen dependent), PC-3 and DU145 (both androgen independent). Relative amounts of HER2/neu and androgen receptor (AR) transcripts were determined using RT-qPCR. Total expression of HER2/neu was confirmed by Western blot (WB). HER2/neu protein on the surface of living LNCaP cells was visualized by confocal microscopy using a HER2/neu-specific fluorescent probe. Exposure of LNCaP cells to 50 µM sarcosine for 24 h resulted in a 58% increase of the HER2/neu mRNA level (P < 0.001) indicating that sarcosine effects HER2/neu expression on the level of transcription. Control experiments with alanine, an isomer of sarcosine, showed no significant effect on HER2/neu transcription. The upregulation of HER2/neu mRNA preceded the corresponding increment of the protein level after the 48-h exposure to sarcosine as shown by WB and confocal microscopy. Interestingly, sarcosine had no effect on the activated (phosphorylated) form of HER2/neu. No significant change in AR expression was observed after exposure to sarcosine. This is the first report indicating that sarcosine is involved in the regulation of the oncoprotein HER2/neu. Thus, sarcosine may induce prostate cancer progression by increased HER2/neu expression. However, detailed information on cellular mechanisms remains to be elucidated.


Assuntos
Androgênios/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptor ErbB-2/genética , Sarcosina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
16.
Children (Basel) ; 8(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200194

RESUMO

Neuroblastoma (NB) is the most common extracranial solid tumour in childhood, accounting for approximately 15% of all cancer-related deaths in the paediatric population1. It is characterised by heterogeneous clinical behaviour in neonates and often adverse outcomes in toddlers. The overall survival of children with high-risk disease is around 40-50% despite the aggressive treatment protocols consisting of intensive chemotherapy, surgery, radiation therapy and hematopoietic stem cell transplantation2,3. There is an ongoing research effort to increase NB's cellular and molecular biology knowledge to translate essential findings into novel treatment strategies. This review aims to address new therapeutic modalities emerging from preclinical studies offering a unique translational opportunity for NB treatment.

17.
Crit Rev Oncol Hematol ; 161: 103325, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33836238

RESUMO

Near-InfraRed PhotoImmunoTherapy (NIR-PIT) is a novel cancer-targeted treatment effected by a chemical conjugation between a photosensitiser (e.g. the NIR phthalocyanine dye IRDye700DX) and a cancer-targeting moiety (e.g. a monoclonal antibody, moAb). Delivery of a conjugate in vivo leads to accumulation at the tumour cell surface by binding to cell surface receptors or antigens. Upon deployment of focal NIR-light, irradiation of the conjugate results in a rapid, targeted cell death. However, the mechanisms of action to produce the cytotoxic effects have yet to be fully understood. Herein, we bring together the current knowledge of NIR-PIT from preclinical and clinical studies in a variety of cancers highlighting the key unanswered research questions. Furthermore, we discuss how to enhance the local control of solid cancers using this novel treatment regimen.


Assuntos
Imunoconjugados , Neoplasias , Anticorpos Monoclonais , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias/terapia , Fármacos Fotossensibilizantes , Fototerapia
18.
Int J Nanomedicine ; 16: 8465-8483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002239

RESUMO

Recently, the demand for hybrid PET/MRI imaging techniques has increased significantly, which has sparked the investigation into new ways to simultaneously track multiple molecular targets and improve the localization and expression of biochemical markers. Multimodal imaging probes have recently emerged as powerful tools for improving the detection sensitivity and accuracy-both important factors in disease diagnosis and treatment; however, only a limited number of bimodal probes have been investigated in preclinical models. Herein, we briefly describe the strengths and limitations of PET and MRI modalities and highlight the need for the development of multimodal molecularly-targeted agents. We have tried to thoroughly summarize data on bimodal probes available on PubMed. Emphasis was placed on their design, safety profiles, pharmacokinetics, and clearance properties. The challenges in PET/MR probe development using a number of illustrative examples are also discussed, along with future research directions for these novel conjugates.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Imagem Multimodal
19.
Cell Death Differ ; 28(10): 2970-2982, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34226680

RESUMO

Junctional adhesion molecules (JAMs) play a critical role in cell permeability, polarity and migration. JAM-A, a key protein of the JAM family, is altered in a number of conditions including cancer; however, consequences of JAM-A dysregulation on carcinogenesis appear to be tissue dependent and organ dependent with significant implications for the use of JAM-A as a biomarker or therapeutic target. Here, we test the expression and prognostic role of JAM-A downregulation in primary and metastatic colorectal cancer (CRC) (n = 947). We show that JAM-A downregulation is observed in ~60% of CRC and correlates with poor outcome in four cohorts of stages II and III CRC (n = 1098). Using JAM-A knockdown, re-expression and rescue experiments in cell line monolayers, 3D spheroids, patient-derived organoids and xenotransplants, we demonstrate that JAM-A silencing promotes proliferation and migration in 2D and 3D cell models and increases tumour volume and metastases in vivo. Using gene-expression and proteomic analyses, we show that JAM-A downregulation results in the activation of ERK, AKT and ROCK pathways and leads to decreased bone morphogenetic protein 7 expression. We identify MIR21 upregulation as the cause of JAM-A downregulation and show that JAM-A rescue mitigates the effects of MIR21 overexpression on cancer phenotype. Our results identify a novel molecular loop involving MIR21 dysregulation, JAM-A silencing and activation of multiple oncogenic pathways in promoting invasiveness and metastasis in CRC.


Assuntos
Moléculas de Adesão Celular/metabolismo , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Estudos de Casos e Controles , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Metástase Neoplásica , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética
20.
Chembiochem ; 11(3): 345-50, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20052708

RESUMO

The human epidermal growth factor receptors, EGFR and HER2, are members of the EGFR family of cell-surface receptors/tyrosine kinases. EGFR- and HER2-positive cancers represent a more aggressive disease with greater likelihood of recurrence, poorer prognosis, and decreased survival rate, compared to EGFR- or HER2-negative cancers. The details of HER2 proto-oncogenic functions are not deeply understood, partially because of a restricted availability of tools for EGFR and HER2 detection (A. Sorkin and L. K. Goh, Exp. Cell Res. 2009, 315, 683-696). We have created photostable and relatively simple-to-produce imaging probes for in vitro staining of EGFR and HER2. These new reagents, called affiprobes, consist of a targeting moiety, a HER2- or EGFR-specific Affibody molecule, and a fluorescent moiety, mCherry (red) or EGFP (green). Our flow cytometry and confocal microscopy experiments demonstrated high specificity and signal/background ratio of affiprobes. Affiprobes are able to stain both live cells and frozen tumor xenograph sections. This type of optical probe can easily be extended for targeting other cell-surface antigens/ receptors.


Assuntos
Receptores ErbB/análise , Proteínas Luminescentes/genética , Sondas Moleculares/química , Receptor ErbB-2/análise , Proteínas Recombinantes de Fusão/química , Animais , Benzimidazóis/química , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Citometria de Fluxo , Corantes Fluorescentes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Camundongos , Microscopia Confocal , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transplante Heterólogo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA