Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674913

RESUMO

Insufficient vascular growth in the area of artificial-material implantation contributes to ischemia, fibrosis, the development of bacterial infections, and tissue necrosis around the graft. The purpose of this study was to evaluate angiogenesis after implantation of polycaprolactone microfiber scaffolds modified by a pCMV-VEGF165-plasmid in rats. Influence of vascularization on scaffold degradation was also examined. We investigated flat microfibrous scaffolds obtained by electrospinning polycaprolactone with incorporation of the pCMV-VEGF-165 plasmid into the microfibers at concentrations of 0.005 ng of plasmid per 1 mg of polycaprolactone (0.005 ng/mg) (LCGroup) and 0.05 ng/mg (HCGroup). The samples were subcutaneously implanted in the interscapular area of rats. On days 7, 16, 33, 46, and 64, the scaffolds were removed, and a histological study with a morphometric evaluation of the density and diameter of the vessels and microfiber diameter was performed. The number of vessels was increased in all groups, as well as the resorption of the scaffold. On day 33, the vascular density in the HCGroup was 42% higher compared to the control group (p = 0.0344). The dose-dependent effect of the pCMV-VEGF165-plasmid was confirmed by enhanced angiogenesis in the HCGroup compared to the LCGroup on day 33 (p-value = 0.0259). We did not find a statistically significant correlation between scaffold degradation rate and vessel growth (the Pearson correlation coefficient was ρ = 0.20, p-value = 0.6134). Functionalization of polycaprolactone by incorporation of the pCMV-VEGF165 plasmid provided improved vascularization within 33 days after implantation, however, vessel growth did not seem to correlate with scaffold degradation rate.


Assuntos
Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica/genética , Plasmídeos/genética , Engenharia Tecidual
2.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069106

RESUMO

Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation.


Assuntos
Condrócitos , Traqueia , Animais , Coelhos , Humanos , Condrócitos/transplante , Traqueia/metabolismo , Alicerces Teciduais , Cartilagem/transplante , Engenharia Tecidual/métodos , Colágeno/metabolismo , Inflamação/metabolismo
3.
Int Wound J ; 19(4): 871-887, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34713964

RESUMO

A growing number of studies report dermal malignancies mimicking diabetic foot ulcers (DFUs). We reviewed clinical cases reporting malignant tumours misdiagnosed to be DFU aiming to identify factors contributing to misdiagnosis. We systematically searched in PubMed for clinical cases reporting on misdiagnosis of DFU in patients with cancer. A chi-square analysis was conducted to show the link between the incidence of initial DFU misdiagnosis and patient age, gender and wound duration. Lesions misdiagnosed to be DFU were subsequently diagnosed as melanoma (68% of the cases), Kaposi's sarcoma (14%), squamous cell carcinoma (11%), mantle cell lymphoma, and diffuse B-cell lymphoma (both by 4%). Older age (≥65 years) was associated with a significantly increased risk of malignancy masked as DFU (OR: 2.452; 95% CI: 1.132 to 5.312; P value = .019). The risk of such suspicion in older patients (age ≥ 65 years) was 145% higher than in younger patients (age < 65 years). Clinicians should maintain a high level of awareness towards potentially malignant foot lesions in elderly patients with diabetes (age ≥ 65).


Assuntos
Diabetes Mellitus , Pé Diabético , Úlcera do Pé , Neoplasias Cutâneas , Adulto , Idoso , Pé Diabético/complicações , Erros de Diagnóstico , , Humanos , Incidência , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/diagnóstico
4.
Molecules ; 23(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373232

RESUMO

Soil fungi are known to contain a rich variety of defense metabolites that allow them to compete with other organisms (fungi, bacteria, nematodes, and insects) and help them occupy more preferential areas at the expense of effective antagonism. These compounds possess antibiotic activity towards a wide range of other microbes, particularly fungi that belong to different taxonomical units. These compounds include peptaibols, which are non-ribosomal synthesized polypeptides containing non-standard amino acid residues (alpha-aminoisobutyric acid mandatory) and some posttranslational modifications. We isolated a novel antibiotic peptide from the culture medium of Emericellopsis alkalina, an alkalophilic strain. This peptide, called emericellipsin A, exhibited a strong antifungal effect against the yeast Candida albicans, the mold fungus Aspergillus niger, and human pathogen clinical isolates. It also exhibited antimicrobial activity against some Gram-positive and Gram-negative bacteria. Additionally, emericellipsin A showed a significant cytotoxic effect and was highly active against Hep G2 and HeLa tumor cell lines. We used NMR spectroscopy to reveal that this peptaibol is nine amino acid residues long and contains non-standard amino acids. The mode of molecular action of emericellipsin A is most likely associated with its effects on the membranes of cells. Emericellipsin A is rather short peptaibol and could be useful for the development of antifungal, antibacterial, or anti-tumor remedies.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ascomicetos/química , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Ascomicetos/metabolismo , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fungos/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Estrutura Molecular
5.
Gels ; 9(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367127

RESUMO

Our study sought approaches for chronic liver failure (CLF) treatment and correction via cell-engineered constructs (CECs). They are built from biopolymer-based, microstructured, and collagen-containing hydrogel (BMCG). We also strove to evaluate the functional activity of BMCG in liver regeneration. MATERIALS AND METHODS: Allogeneic liver cells (namely, hepatocytes; LC) together with mesenchymal multipotent stem cells of bone marrow origin (MMSC BM; BMSCs) were adhered to our BMCG to compose implanted liver CECs. Thereafter, we investigated a model of CLF in rats receiving the implanted CECs. The CLF had been provoked by long-term exposure to carbon tetrachloride. The study comprised male Wistar rats (n = 120) randomized into 3 groups: Group 1 was a control group with the saline treatment of the hepatic parenchyma (n = 40); Group 2 received BMCG only (n = 40); and Group 3 was loaded with CECs implanted into the parenchyma of their livers (n = 40). August rats (n = 30) made up a donor population for LCs and MMSC BM to develop grafts for animals from Group 3. The study length was 90 days. RESULTS: CECs were shown to affect both biochemical test values and morphological parameters in rats with CLF. CONCLUSION: We found BMCG-derived CECs to be operational and active, with regenerative potential. Group 3 showed significant evidence of forced liver regeneration that tended to persist until the end of the study (day 90). The phenomenon is reflected by biochemical signs of hepatic functional recovery by day 30 after grafting (compared to Groups 1 and 2), whereas structural features of liver repair (necrosis prevention, missing formation of vacuoles, degenerating LC number decrease, and delay of hepatic fibrotic transformation). Such implantation of BMCG-derived CECs with allogeneic LCs and MMSC BM might represent a proper option to correct and treat CLF, as well as to maintain affected liver function in patients with liver grafting needed.

6.
Biomedicines ; 11(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36979723

RESUMO

This article reports the electrospinning technique for the manufacturing of multilayered scaffolds for bile duct tissue engineering based on an inner layer of polycaprolactone (PCL) and an outer layer either of a copolymer of D,L-lactide and glycolide (PLGA) or a copolymer of L-lactide and ε-caprolactone (PLCL). A study of the degradation properties of separate polymers showed that flat PCL samples exhibited the highest resistance to hydrolysis in comparison with PLGA and PLCL. Irrespective of the liquid-phase nature, no significant mass loss of PCL samples was found in 140 days of incubation. The PLCL- and PLGA-based flat samples were more prone to hydrolysis within the same period of time, which was confirmed by the increased loss of mass and a significant reduction of weight-average molecular mass. The study of the mechanical properties of developed multi-layered tubular scaffolds revealed that their strength in the longitudinal and transverse directions was comparable with the values measured for a decellularized bile duct. The strength of three-layered scaffolds declined significantly because of the active degradation of the outer layer made of PLGA. The strength of scaffolds with the PLCL outer layer deteriorated much less with time, both in the axial (p-value = 0.0016) and radial (p-value = 0.0022) directions. A novel method for assessment of the physiological relevance of synthetic scaffolds was developed and named the phase space approach for assessment of physiological relevance. Two-dimensional phase space (elongation modulus and tensile strength) was used for the assessment and visualization of the physiological relevance of scaffolds for bile duct bioengineering. In conclusion, the design of scaffolds for the creation of physiologically relevant tissue-engineered bile ducts should be based not only on biodegradation properties but also on the biomechanical time-related behavior of various compositions of polymers and copolymers.

8.
Polymers (Basel) ; 14(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956695

RESUMO

Aim: In this study, we seek to check if recombinant spidroin rS1/9 is applicable for cell-engineering construct development. Novel technologies of cell and tissue engineering are relevant for chronic liver failure management. Liver regeneration may represent one of the possible treatment options if a cell-engineered construct (CEC) is used. Nowadays, one can see the continuous study of various matrices to create an appropriate CEC. Materials and Methods: We have adhered allogenic liver cells and multipotent mesenchymal bone marrow stem cells (MMSC BM) to a microgel with recombinant spidroin rS1/9. Then we have studied the developed implantable CEC in a rat model (n = 80) of chronic liver failure achieved by prolonged poisoning with carbon tetrachloride. Results: Our results demonstrate that the CECs change the values of biochemical tests and morphological parameters in chronic liver failure in rats. Conclusion: We consider there to be a positive effect from the microgel-based CECs with recombinant spidroin rS1/9 in the treatment of chronic liver failure.

9.
Front Bioeng Biotechnol ; 9: 591775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222206

RESUMO

The long-term co-culture of mouse embryonic stem cells (mESC) with rat endothelial cells (EC) was tested for contact differentiation into the endothelial lineage. Serial passaging of rat ECs mixed with mESC in ratio 10:1 resulted in the emergence of a homogeneous cell population expressing mouse endothelial surface markers CD102, CD29, CD31. Rat endothelial surface marker RECA-1 completely disappeared from the co-cultured population after 2 months of weekly passaging. Co-incubation of mESC with rat ECs without cell-to-cell contact did not result in the conversion of mESC into ECs. After co-cultivation of adult mesenchymal stem cells from human endometrium (eMSC) with pre-hepatocyte-like cells of human hepatocarcinoma Huh7 the resulting co-culture expressed mature liver markers (oval cell antigen and cytokeratin 7), none of which were expressed by any of co-cultivated cultures, thus proving that even an immature (proliferating) pre-hepatocyte-like line can induce hepatic differentiation of stem cells. In conclusion, we have developed conditions where long-term co-proliferation of embryonic or adult SC with fully or partially differentiated cells results in stem cell progeny expressing markers of target tissue. In the case of endothelial differentiation, the template population quickly disappeared from the resulted culture and the pure endothelial population of stem cell progeny emerged. This approach demonstrates the expected fate of stem cells during various in vivo SC-therapies and also might be used as an effective in vitro differentiation method to develop the pure endothelium and, potentially, other tissue types of desirable genetic background.

10.
Dent J (Basel) ; 9(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34562975

RESUMO

Soft gingival tissue deficiency remains a severe problem leading to postoperative recession, peri-implantitis, and bone resorption. The use of collagen matrices does not always lead to complete rebuilding of the gingiva volume. The application of mesenchymal stromal cells (MSCs) simultaneously with collagen materials represents a promising approach for the restoration of soft gingival tissues. However, short-term effects of MSCs-enriched collagen grafts after gingival augmentation have not yet been studied properly. Mucograft and Mucoderm matrices were implanted in rabbits (n = 12) simultaneously with the intraoperative injection of rabbit bone marrow-derived mesenchymal stromal cells (BM-MSCs) or without cells. Collagen matrices were implanted under the flap or by the surface technique without intentional primary closure. The samples were harvested seven days after implantation, histological staining with hematoxylin and eosin, and immunohistochemical staining for VEGF, IGF1, and TGF were performed. The use of Mucoderm led to better augmentation outcomes on day 7 compared with Mucograft (p < 0.0001). Gingival augmentation in combination with the local administration of BM-MSCs led to better regeneration of the soft gingival tissues independently of the type of implanted collagen matrices (p < 0.0001). Furthermore, injection of BM-MSCs significantly enhanced gingival vascularization and epithelization with a clear positive correlation between vascular growth and epithelial response. Administration of BM-MSCs in combination with various collagen materials may potentially improve gingiva regeneration.

11.
Front Genet ; 10: 310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031800

RESUMO

The goal of this work was to determine the effect of nonablative syngeneic transplantation of young bone marrow (BM) to laboratory animals (mice) of advanced age upon maximum duration of their lifespan. To do this, transplantation of 100 million nucleated cells from BM of young syngeneic donors to an old nonablated animal was performed at the time when half of the population had already died. As a result, the maximum lifespan (MLS) increased by 28 ± 5%, and the survival time from the beginning of the experiment increased 2.8 ± 0.3-fold. The chimerism of the BM 6 months after the transplantation was 28%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA