RESUMO
Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.
Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Hipocampo , Interneurônios , Camundongos Transgênicos , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/patologia , Neurônios Dopaminérgicos/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Parvalbuminas/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D2/metabolismo , Masculino , Células Piramidais/metabolismo , Levodopa/farmacologia , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Degeneração Neural/metabolismo , Quimpirol/farmacologia , Ritmo Gama/fisiologia , Camundongos Endogâmicos C57BLRESUMO
The CISD2 gene encodes the CDGSH iron-sulfur domain-containing protein 2. Cisd2 is involved in mammalian lifespan control, the unfolded protein response, Ca2+ buffering, and autophagy regulation. It has been demonstrated previously that Cisd2 deficiency causes an accelerated ageing phenotype characterised by the accumulation of damaged mitochondria, while Cisd2 overexpression leads to mitochondrial protection against typical age-associated alterations. Accumulating data suggest that neuronal amyloid-beta (Aß) deposition, Ca2+ dysregulation, impairment of autophagic flux, and accumulation of damaged organelles including mitochondria play an important role in Alzheimer's disease (AD) pathogenesis. In a recent issue of The Journal of Pathology, Yi-Fan Chen and collaborators put together all these experimental observations and demonstrated that Cisd2 overexpression attenuates AD pathogenesis by guaranteeing mitochondrial quality and synaptic functions. The authors report convincing evidence to highlight the role of Cisd2 in Aß-mediated mitochondrial damage and, interestingly, this neuroprotection could be dependent on other molecular mechanisms beyond the canonical and previously described roles of Cisd2. Collectively, these data open up new avenues in neuroprotection and highlight Cisd2 as a promising new target in AD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Doença de Alzheimer , Proteínas de Membrana , Animais , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Mitocôndrias , Proteínas do Tecido Nervoso , Neurônios , Reino UnidoRESUMO
The functional loop involving the ventral tegmental area (VTA), dorsal hippocampus and nucleus accumbens (NAc) plays a pivotal role in the formation of spatial memory and persistent memory traces. In particular, the dopaminergic innervation from the VTA to the hippocampus is critical for hippocampal-related memory function and alterations in the midbrain dopaminergic system are frequently reported in Alzheimer's disease (AD), contributing to age-related decline in memory and non-cognitive functions. However, much less is known about the hippocampus-NAc connectivity in AD. Here, we evaluated the functioning of the hippocampus-to-NAc core connectivity in the Tg2576 mouse model of AD that shows a selective and progressive degeneration of VTA dopaminergic neurons. We show that reduced dopaminergic innervation in the Tg2576 hippocampus results in reduced synaptic plasticity and excitability of dorsal subiculum pyramidal neurons. Importantly, the glutamatergic transmission from the hippocampus to the NAc core is also impaired. Chemogenetic depolarisation of Tg2576 subicular pyramidal neurons with an excitatory Designer Receptor Exclusively Activated by Designer Drugs, or systemic administration of the DA precursor levodopa, can both rescue the deficits in Tg2576 mice. Our data suggest that the dopaminergic signalling in the hippocampus is essential for the proper functioning of the hippocampus-NAc excitatory synaptic transmission.
Assuntos
Doença de Alzheimer/metabolismo , Dopamina/metabolismo , Hipocampo/metabolismo , Núcleo Accumbens/metabolismo , Transmissão Sináptica/fisiologia , Doença de Alzheimer/genética , Animais , Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de ÓrgãosRESUMO
We studied the properties of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) in mice expressing the enhanced green fluorescent protein (eGFP) under the control of the tyrosine hydroxylase promoter (TH-GFP). By using a practical map of cell positioning in distinct SNpc and VTA subregions in horizontal midbrain slices we saw that the spontaneous firing, membrane properties, cell body size and magnitude of the hyperpolarization-activated current (Ih ) in TH-GFP-positive neurons (TH-GFP+ ) vary significantly among subregions, following a mediolateral gradient. Block of Ih with Zd7288 inhibited firing in the most lateral subregions, but had little effect in the intermediate/medial VTA. In addition, TH-GFP+ cells were excited by Met5 -Enkephalin. Extracellular recordings from a large neuron number showed that all TH-GFP+ cells were inhibited by dopamine, suggesting that this is a reliable approach for identifying dopaminergic neurons in vitro. Simultaneous recordings from dopamine-sensitive and dopamine-insensitive neurons showed that dopamine-insensitive cells (putative non-dopaminergic neurons) are unaffected by Zd7288 but inhibited by Met5 -Enkephalin. Under patch-clamp, dopamine generated a quantitatively similar outward current in most TH-GFP+ neurons, although medial VTA cells showed reduced dopamine sensitivity. Pargyline prolonged the dopamine current, whereas cocaine enhanced dopamine-mediated responses in both the SNpc and the VTA. Our work provides new insights into the variability in mouse midbrain dopaminergic neurons along the medial-lateral axis and points to the necessity of a combination of different electrophysiological and pharmacological approaches for reliably identifying these cells to distinguish them from non-dopaminergic neurons in the midbrain.
Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Potenciais da Membrana/fisiologia , Mesencéfalo/metabolismo , Camundongos , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Assuntos
Doença de Alzheimer , Progressão da Doença , Estimulação Transcraniana por Corrente Contínua , Doença de Alzheimer/terapia , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Ritmo Gama/fisiologia , AnimaisRESUMO
In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1ß and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.
Assuntos
Inflamassomos , Doenças Neurodegenerativas , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dopamina/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Microglia/metabolismoRESUMO
Female, but not male, mice with haploinsufficiency for the proautophagic Ambra1 gene show an autistic-like phenotype associated with hippocampal circuits dysfunctions which include loss of parvalbuminergic interneurons (PV-IN), decrease in the inhibition/excitation ratio, and abundance of immature dendritic spines on CA1 pyramidal neurons. Given the paucity of data relating to female autism, we exploit the Ambra1+/- female model to investigate whether rectifying the inhibitory input onto hippocampal principal neurons (PN) rescues their ASD-like phenotype at both the systems and circuits level. Moreover, being the autistic phenotype exclusively observed in the female mice, we control the effect of the mutation and treatment on hippocampal expression of estrogen receptors (ER). Here we show that excitatory DREADDs injected in PV_Cre Ambra1+/- females augment the inhibitory input onto CA1 principal neurons (PN), rescue their social and attentional impairments, and normalize dendritic spine abnormalities and ER expression in the hippocampus. By providing the first evidence that hippocampal excitability jointly controls autistic-like traits and ER in a model of female autism, our findings identify an autophagy deficiency-related mechanism of hippocampal neural and hormonal dysregulation which opens novel perspectives for treatments specifically designed for autistic females.
Assuntos
Transtorno Autístico , Região CA1 Hipocampal , Feminino , Camundongos , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Receptores de Estrogênio/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Interneurônios/metabolismo , Fenótipo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
Neuropsychiatric symptoms (NPS) occur in nearly all patients with Alzheimer's Disease (AD). Most frequently they appear since the mild cognitive impairment (MCI) stage preceding clinical AD, and have a prognostic importance. Unfortunately, these symptoms also worsen the daily functioning of patients, increase caregiver stress and accelerate the disease progression from MCI to AD. Apathy and depression are the most common of these NPS, and much attention has been given in recent years to understand the biological mechanisms related to their appearance in AD. Although for many decades these symptoms have been known to be related to abnormalities of the dopaminergic ventral tegmental area (VTA), a direct association between deficits in the VTA and NPS in AD has never been investigated. Fortunately, this scenario is changing since recent studies using preclinical models of AD, and clinical studies in MCI and AD patients demonstrated a number of functional, structural and metabolic alterations affecting the VTA dopaminergic neurons and their mesocorticolimbic targets. These findings appear early, since the MCI stage, and seem to correlate with the appearance of NPS. Here, we provide an overview of the recent evidence directly linking the dopaminergic VTA with NPS in AD and propose a setting in which the precocious identification of dopaminergic deficits can be a helpful biomarker for early diagnosis. In this scenario, treatments of patients with dopaminergic drugs might slow down the disease progression and delay the impairment of daily living activities.
RESUMO
Gradual decline in cognitive and non-cognitive functions are considered clinical hallmarks of Alzheimer's Disease (AD). Post-mortem autoptic analysis shows the presence of amyloid ß deposits, neuroinflammation and severe brain atrophy. However, brain circuit alterations and cellular derailments, assessed in very early stages of AD, still remain elusive. The understanding of these early alterations is crucial to tackle defective mechanisms. In a previous study we proved that the Tg2576 mouse model of AD displays functional deficits in the dorsal hippocampus and relevant behavioural AD-related alterations. We had shown that these deficits in Tg2576 mice correlate with the precocious degeneration of dopamine (DA) neurons in the Ventral Tegmental Area (VTA) and can be restored by L-DOPA treatment. Due to the distinct functionality and connectivity of dorsal versus ventral hippocampus, here we investigated neuronal excitability and synaptic functionality in the ventral CA1 hippocampal sub-region of Tg2576 mice. We found an age-dependent alteration of cell excitability and firing in pyramidal neurons starting at 3 months of age, that correlates with reduced levels in the ventral CA1 of tyrosine hydroxylase - the rate-limiting enzyme of DA synthesis. Additionally, at odds with the dorsal hippocampus, we found no alterations in basal glutamatergic transmission and long-term plasticity of ventral neurons in 8-month old Tg2576 mice compared to age-matched controls. Last, we used computational analysis to model the early derailments of firing properties observed and hypothesize that the neuronal alterations found could depend on dysfunctional sodium and potassium conductances, leading to anticipated depolarization-block of action potential firing. The present study depicts that impairment of cell excitability and homeostatic control of firing in ventral CA1 pyramidal neurons is a prodromal feature in Tg2576 AD mice.
Assuntos
Doença de Alzheimer/fisiopatologia , Região CA1 Hipocampal/fisiopatologia , Fenômenos Eletrofisiológicos , Células Piramidais , Potenciais de Ação , Envelhecimento , Animais , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos , Feminino , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Canais de Potássio , Canais de Sódio , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/fisiopatologiaRESUMO
BACKGROUND: Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS: In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS: We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION: Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.
Assuntos
Doença de Alzheimer , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/patologia , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Calbindina 2/metabolismo , Doença de Alzheimer/metabolismo , Regulação para Cima , Proteínas de Transporte/metabolismo , Calbindina 1/metabolismoRESUMO
What happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing. Here, we deeply investigate the physiology of DA neurons in the VTA before, at the onset, and after onset of VTA neurodegeneration. We use the Tg2576 mouse model of AD, overexpressing a mutated form of the human APP, to identify molecular targets that can be manipulated pharmacologically. We show that in Tg2576 mice, DA neurons of the VTA at the onset of degeneration undergo slight but functionally relevant changes in their electrophysiological properties and cell morphology. Importantly, these changes are associated with accumulation of autophagosomes, suggestive of a dysfunctional autophagy, and with enhanced activation of c-Abl, a tyrosine kinase previously implicated in the pathogenesis of neurodegenerative diseases. Chronic treatment of Tg2576 mice with Nilotinib, a validated c-Abl inhibitor, reduces c-Abl phosphorylation, improves autophagy, reduces Aß levels and - more importantly - prevents degeneration as well as functional and morphological alterations in DA neurons of the VTA. Interestingly, the drug prevents the reduction of DA outflow to the hippocampus and ameliorates hippocampal-related cognitive functions. Our results strive to identify early pathological brain changes in AD, to provide a rational basis for new therapeutic interventions able to slow down the disease progression.
Assuntos
Doença de Alzheimer , Neurônios Dopaminérgicos , Doença de Alzheimer/tratamento farmacológico , Animais , Modelos Animais de Doenças , Dopamina , Camundongos , Pirimidinas , Área Tegmentar VentralRESUMO
Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidß metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidß-dependent and independent neuropathological and cognitive alterations in affected subjects.
RESUMO
Choline has been used widely as an agonist for the investigation of gain-of-function mutants of the nicotinic acetylcholine receptor. It is useful because it behaves like a partial agonist. The efficacy of choline is difficult to measure because choline blocks the channel at concentrations about four times lower than those that activate it. We have fitted activation mechanisms to single-channel activity elicited from HEK-expressed human recombinant muscle nicotinic receptors by choline and by tetramethylammonium (TMA). Channel block by the agonist was incorporated into the mechanisms that were fitted, and block was found not to be selective for the open state. The results also suggest that channel block is very fast and that the channel can shut almost as fast as normal when the blocker was bound. Single-channel data are compatible with a mechanism in which choline is actually a full agonist, its maximum response being limited only by channel block. However, they are also compatible with a mechanism incorporating a pre-opening conformation change ('flip') in which choline is a genuine partial agonist. The latter explanation is favoured by concentration jump experiments, and by the fact that only this mechanism fits the TMA data. We propose that choline, like TMA, is a partial agonist because it is very ineffective (approximately 600-fold less than acetylcholine) at eliciting the initial, pre-opening conformation change. Once flipping has occurred, all agonists, even choline, open the channel with similar efficiency.
Assuntos
Colina/administração & dosagem , Ativação do Canal Iônico/fisiologia , Rim/metabolismo , Músculo Esquelético/metabolismo , Compostos de Amônio Quaternário/administração & dosagem , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Rim/efeitos dos fármacos , Agonistas Nicotínicos/administração & dosagem , Antagonistas Nicotínicos/administração & dosagemRESUMO
The activating molecule in Beclin-1-regulated autophagy (Ambra1) is a highly intrinsically disordered protein best known for its role as a mediator in autophagy, by favoring the formation of autophagosomes. Additional studies have revealed that Ambra1 is able to coordinate cell responses to stress conditions such as starvation, and it actively participates in cell proliferation, cytoskeletal modification, apoptosis, mitochondria removal, and cell cycle downregulation. All these functions highlight the importance of Ambra1 in crucial physiological events, including metabolism, cell death, and cell division. Importantly, Ambra1 is also crucial for proper embryonic development, and its complete absence in knock-out animal models leads to severe brain morphology defects. In line with this, it has recently been implicated in neurodevelopmental disorders affecting humans, particularly autism spectrum disorders and schizophrenia. Here, we discuss the recent links between Ambra1 and neurodevelopment, particularly focusing on its role during the maturation of hippocampal parvalbumin interneurons and its importance for maintaining a proper excitation/inhibition balance in the brain.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transtorno Autístico/metabolismo , Esquizofrenia/metabolismo , Animais , Comportamento , Humanos , Interneurônios/metabolismo , Modelos BiológicosRESUMO
OBJECTIVE: Autoantibody-mediated forms of encephalitis (AE) include neurological disorders characterized by subacute memory loss, movement disorders, and, often, frequent, focal epileptic seizures. Yet, the electrophysiological effects of these autoantibodies on neuronal function have received little attention. In this study, we assessed the effects of CSF containing autoantibodies on intrinsic and extrinsic properties of hippocampal neurons, to define their epileptogenic potential. METHODS: We compared the effects of CSF containing leucine-rich glioma inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2), and γ-aminobutyric acid receptor B (GABAB R) antibodies on ex vivo electrophysiological parameters after stereotactic hippocampal inoculation into mice. Whole-cell patch-clamp and extracellular recordings from CA1 pyramidal neurons and CA3-CA1 field recordings in ex vivo murine brain slices were used to study neuronal function. RESULTS: By comparison to control CSF, AE CSFs increased the probability of glutamate release from CA3 neurons. In addition, LGI1- and CASPR2 antibodies containing CSFs induced epileptiform activity at a population level following Schaffer collateral stimulation. CASPR2 antibody containing CSF was also associated with higher spontaneous firing of CA1 pyramidal neurons. On the contrary, GABAB R antibody containing CSF did not elicit changes in intrinsic neuronal activity and field potentials. INTERPRETATION: Using patient CSF, we have demonstrated that the AE-associated antibodies against LGI1 and CASPR2 are able to increase hippocampal CA1 neuron excitability, facilitating epileptiform activity. These findings provide in vivo pathogenic insights into neuronal dysfunction in these conditions.
Assuntos
Autoanticorpos , Doenças Autoimunes do Sistema Nervoso , Encefalite , Epilepsia , Hipocampo , Animais , Autoanticorpos/líquido cefalorraquidiano , Autoanticorpos/farmacologia , Autoantígenos/imunologia , Doenças Autoimunes do Sistema Nervoso/complicações , Doenças Autoimunes do Sistema Nervoso/imunologia , Encefalite/complicações , Encefalite/imunologia , Epilepsia/etiologia , Epilepsia/imunologia , Hipocampo/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia , Neurônios/efeitos dos fármacos , Receptores de GABA-B/imunologiaRESUMO
Neuroinflammation is one of the hallmarks of Parkinson's disease (PD) and may contribute to midbrain dopamine (DA) neuron degeneration. Recent studies link chronic inflammation with failure to resolve early inflammation, a process operated by specialized pro-resolving mediators, including resolvins. However, the effects of stimulating the resolution of inflammation in PD - to modulate disease progression - still remain unexplored. Here we show that rats overexpressing human α-synuclein (Syn) display altered DA neuron properties, reduced striatal DA outflow and motor deficits prior to nigral degeneration. These early alterations are coupled with microglia activation and perturbations of inflammatory and pro-resolving mediators, namely IFN-γ and resolvin D1 (RvD1). Chronic and early RvD1 administration in Syn rats prevents central and peripheral inflammation, as well as neuronal dysfunction and motor deficits. We also show that endogenous RvD1 is decreased in human patients with early-PD. Our results suggest there is an imbalance between neuroinflammatory and pro-resolving processes in PD.
Assuntos
Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Inflamação/prevenção & controle , Degeneração Neural/prevenção & controle , Doença de Parkinson/prevenção & controle , Animais , Ácidos Docosa-Hexaenoicos/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra+/-) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1+/- females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Inibição Neural , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Animais , Apoptose , Comportamento Animal , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Ritmo Gama , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/patologia , Plasticidade Neuronal , Parvalbuminas/metabolismo , Comportamento SocialRESUMO
Alterations of the dopaminergic (DAergic) system are frequently reported in Alzheimer's disease (AD) patients and are commonly linked to cognitive and non-cognitive symptoms. However, the cause of DAergic system dysfunction in AD remains to be elucidated. We investigated alterations of the midbrain DAergic system in the Tg2576 mouse model of AD, overexpressing a mutated human amyloid precursor protein (APPswe). Here, we found an age-dependent DAergic neuron loss in the ventral tegmental area (VTA) at pre-plaque stages, although substantia nigra pars compacta (SNpc) DAergic neurons were intact. The selective VTA DAergic neuron degeneration results in lower DA outflow in the hippocampus and nucleus accumbens (NAc) shell. The progression of DAergic cell death correlates with impairments in CA1 synaptic plasticity, memory performance and food reward processing. We conclude that in this mouse model of AD, degeneration of VTA DAergic neurons at pre-plaque stages contributes to memory deficits and dysfunction of reward processing.
Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Neurônios Dopaminérgicos/patologia , Memória , Recompensa , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Di-Hidroxifenilalanina/farmacologia , Di-Hidroxifenilalanina/uso terapêutico , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Alimentos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Inflamação/complicações , Inflamação/patologia , Camundongos Transgênicos , Degeneração Neural/complicações , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/patologia , Núcleo Accumbens/fisiopatologia , Placa Amiloide/complicações , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Selegilina/farmacologia , Selegilina/uso terapêutico , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/patologia , Área Tegmentar Ventral/fisiopatologiaRESUMO
Dopamine neurons in the substantia nigra pars compacta regulate not only motor but also cognitive functions. NMDA receptors play a crucial role in modulating the activity of these cells. Considering that the amino-acid D-Aspartate has been recently shown to be an endogenous NMDA receptor agonist, the aim of the present study was to examine the effects of D-Aspartate on the functional properties of nigral dopamine neurons. We compared the electrophysiological actions of D-Aspartate in control and D-aspartate oxidase gene (Ddo(-/-)) knock-out mice that show a concomitant increase in brain D-Aspartate levels, improved synaptic plasticity and cognition. Finally, we analyzed the effects of L-Aspartate, a known dopamine neuron endogenous agonist in control and Ddo(-/-) mice. We show that D- and L-Aspartate excite dopamine neurons by activating NMDA, AMPA and metabotropic glutamate receptors. Ddo deletion did not alter the intrinsic properties or dopamine sensitivity of dopamine neurons. However, NMDA-induced currents were enhanced and membrane levels of the NMDA receptor GluN1 and GluN2A subunits were increased. Inhibition of excitatory amino-acid transporters caused a marked potentiation of D-Aspartate, but not L-Aspartate currents, in Ddo(-/-) neurons. This is the first study to show the actions of D-Aspartate on midbrain dopamine neurons, activating not only NMDA but also non-NMDA receptors. Our data suggest that dopamine neurons, under conditions of high D-Aspartate levels, build a protective uptake mechanism to compensate for increased NMDA receptor numbers and cell hyper-excitation, which could prevent the consequent hyper-dopaminergia in target zones that can lead to neuronal degeneration, motor and cognitive alterations.