Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(50): 13108-13113, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29183967

RESUMO

The United States spends more than $250 million each year on the American Community Survey (ACS), a labor-intensive door-to-door study that measures statistics relating to race, gender, education, occupation, unemployment, and other demographic factors. Although a comprehensive source of data, the lag between demographic changes and their appearance in the ACS can exceed several years. As digital imagery becomes ubiquitous and machine vision techniques improve, automated data analysis may become an increasingly practical supplement to the ACS. Here, we present a method that estimates socioeconomic characteristics of regions spanning 200 US cities by using 50 million images of street scenes gathered with Google Street View cars. Using deep learning-based computer vision techniques, we determined the make, model, and year of all motor vehicles encountered in particular neighborhoods. Data from this census of motor vehicles, which enumerated 22 million automobiles in total (8% of all automobiles in the United States), were used to accurately estimate income, race, education, and voting patterns at the zip code and precinct level. (The average US precinct contains ∼1,000 people.) The resulting associations are surprisingly simple and powerful. For instance, if the number of sedans encountered during a drive through a city is higher than the number of pickup trucks, the city is likely to vote for a Democrat during the next presidential election (88% chance); otherwise, it is likely to vote Republican (82%). Our results suggest that automated systems for monitoring demographics may effectively complement labor-intensive approaches, with the potential to measure demographics with fine spatial resolution, in close to real time.


Assuntos
Automóveis/estatística & dados numéricos , Demografia/métodos , Aprendizado de Máquina , População , Imagens de Satélites/métodos , Humanos , Fatores Socioeconômicos , Estados Unidos
2.
Ophthalmology ; 126(12): 1627-1639, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31561879

RESUMO

PURPOSE: To develop and validate a deep learning (DL) algorithm that predicts referable glaucomatous optic neuropathy (GON) and optic nerve head (ONH) features from color fundus images, to determine the relative importance of these features in referral decisions by glaucoma specialists (GSs) and the algorithm, and to compare the performance of the algorithm with eye care providers. DESIGN: Development and validation of an algorithm. PARTICIPANTS: Fundus images from screening programs, studies, and a glaucoma clinic. METHODS: A DL algorithm was trained using a retrospective dataset of 86 618 images, assessed for glaucomatous ONH features and referable GON (defined as ONH appearance worrisome enough to justify referral for comprehensive examination) by 43 graders. The algorithm was validated using 3 datasets: dataset A (1205 images, 1 image/patient; 18.1% referable), images adjudicated by panels of GSs; dataset B (9642 images, 1 image/patient; 9.2% referable), images from a diabetic teleretinal screening program; and dataset C (346 images, 1 image/patient; 81.7% referable), images from a glaucoma clinic. MAIN OUTCOME MEASURES: The algorithm was evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity for referable GON and glaucomatous ONH features. RESULTS: The algorithm's AUC for referable GON was 0.945 (95% confidence interval [CI], 0.929-0.960) in dataset A, 0.855 (95% CI, 0.841-0.870) in dataset B, and 0.881 (95% CI, 0.838-0.918) in dataset C. Algorithm AUCs ranged between 0.661 and 0.973 for glaucomatous ONH features. The algorithm showed significantly higher sensitivity than 7 of 10 graders not involved in determining the reference standard, including 2 of 3 GSs, and showed higher specificity than 3 graders (including 1 GS), while remaining comparable to others. For both GSs and the algorithm, the most crucial features related to referable GON were: presence of vertical cup-to-disc ratio of 0.7 or more, neuroretinal rim notching, retinal nerve fiber layer defect, and bared circumlinear vessels. CONCLUSIONS: A DL algorithm trained on fundus images alone can detect referable GON with higher sensitivity than and comparable specificity to eye care providers. The algorithm maintained good performance on an independent dataset with diagnoses based on a full glaucoma workup.


Assuntos
Aprendizado Profundo , Glaucoma de Ângulo Aberto/diagnóstico , Oftalmologistas , Disco Óptico/patologia , Doenças do Nervo Óptico/diagnóstico , Especialização , Idoso , Área Sob a Curva , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Curva ROC , Encaminhamento e Consulta , Células Ganglionares da Retina/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade
3.
Ophthalmology ; 126(4): 552-564, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30553900

RESUMO

PURPOSE: To understand the impact of deep learning diabetic retinopathy (DR) algorithms on physician readers in computer-assisted settings. DESIGN: Evaluation of diagnostic technology. PARTICIPANTS: One thousand seven hundred ninety-six retinal fundus images from 1612 diabetic patients. METHODS: Ten ophthalmologists (5 general ophthalmologists, 4 retina specialists, 1 retina fellow) read images for DR severity based on the International Clinical Diabetic Retinopathy disease severity scale in each of 3 conditions: unassisted, grades only, or grades plus heatmap. Grades-only assistance comprised a histogram of DR predictions (grades) from a trained deep-learning model. For grades plus heatmap, we additionally showed explanatory heatmaps. MAIN OUTCOME MEASURES: For each experiment arm, we computed sensitivity and specificity of each reader and the algorithm for different levels of DR severity against an adjudicated reference standard. We also measured accuracy (exact 5-class level agreement and Cohen's quadratically weighted κ), reader-reported confidence (5-point Likert scale), and grading time. RESULTS: Readers graded more accurately with model assistance than without for the grades-only condition (P < 0.001). Grades plus heatmaps improved accuracy for patients with DR (P < 0.001), but reduced accuracy for patients without DR (P = 0.006). Both forms of assistance increased readers' sensitivity moderate-or-worse DR: unassisted: mean, 79.4% [95% confidence interval (CI), 72.3%-86.5%]; grades only: mean, 87.5% [95% CI, 85.1%-89.9%]; grades plus heatmap: mean, 88.7% [95% CI, 84.9%-92.5%] without a corresponding drop in specificity (unassisted: mean, 96.6% [95% CI, 95.9%-97.4%]; grades only: mean, 96.1% [95% CI, 95.5%-96.7%]; grades plus heatmap: mean, 95.5% [95% CI, 94.8%-96.1%]). Algorithmic assistance increased the accuracy of retina specialists above that of the unassisted reader or model alone; and increased grading confidence and grading time across all readers. For most cases, grades plus heatmap was only as effective as grades only. Over the course of the experiment, grading time decreased across all conditions, although most sharply for grades plus heatmap. CONCLUSIONS: Deep learning algorithms can improve the accuracy of, and confidence in, DR diagnosis in an assisted read setting. They also may increase grading time, although these effects may be ameliorated with experience.


Assuntos
Algoritmos , Aprendizado Profundo , Retinopatia Diabética/classificação , Retinopatia Diabética/diagnóstico , Diagnóstico por Computador/métodos , Feminino , Humanos , Masculino , Oftalmologistas/normas , Fotografação/métodos , Curva ROC , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
JAMA ; 322(18): 1806-1816, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31714992

RESUMO

In recent years, many new clinical diagnostic tools have been developed using complicated machine learning methods. Irrespective of how a diagnostic tool is derived, it must be evaluated using a 3-step process of deriving, validating, and establishing the clinical effectiveness of the tool. Machine learning-based tools should also be assessed for the type of machine learning model used and its appropriateness for the input data type and data set size. Machine learning models also generally have additional prespecified settings called hyperparameters, which must be tuned on a data set independent of the validation set. On the validation set, the outcome against which the model is evaluated is termed the reference standard. The rigor of the reference standard must be assessed, such as against a universally accepted gold standard or expert grading.


Assuntos
Aprendizado de Máquina , Modelos Teóricos , Algoritmos , Humanos , Publicações , Sensibilidade e Especificidade
5.
Ophthalmology ; 125(8): 1264-1272, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29548646

RESUMO

PURPOSE: Use adjudication to quantify errors in diabetic retinopathy (DR) grading based on individual graders and majority decision, and to train an improved automated algorithm for DR grading. DESIGN: Retrospective analysis. PARTICIPANTS: Retinal fundus images from DR screening programs. METHODS: Images were each graded by the algorithm, U.S. board-certified ophthalmologists, and retinal specialists. The adjudicated consensus of the retinal specialists served as the reference standard. MAIN OUTCOME MEASURES: For agreement between different graders as well as between the graders and the algorithm, we measured the (quadratic-weighted) kappa score. To compare the performance of different forms of manual grading and the algorithm for various DR severity cutoffs (e.g., mild or worse DR, moderate or worse DR), we measured area under the curve (AUC), sensitivity, and specificity. RESULTS: Of the 193 discrepancies between adjudication by retinal specialists and majority decision of ophthalmologists, the most common were missing microaneurysm (MAs) (36%), artifacts (20%), and misclassified hemorrhages (16%). Relative to the reference standard, the kappa for individual retinal specialists, ophthalmologists, and algorithm ranged from 0.82 to 0.91, 0.80 to 0.84, and 0.84, respectively. For moderate or worse DR, the majority decision of ophthalmologists had a sensitivity of 0.838 and specificity of 0.981. The algorithm had a sensitivity of 0.971, specificity of 0.923, and AUC of 0.986. For mild or worse DR, the algorithm had a sensitivity of 0.970, specificity of 0.917, and AUC of 0.986. By using a small number of adjudicated consensus grades as a tuning dataset and higher-resolution images as input, the algorithm improved in AUC from 0.934 to 0.986 for moderate or worse DR. CONCLUSIONS: Adjudication reduces the errors in DR grading. A small set of adjudicated DR grades allows substantial improvements in algorithm performance. The resulting algorithm's performance was on par with that of individual U.S. Board-Certified ophthalmologists and retinal specialists.


Assuntos
Algoritmos , Competência Clínica/normas , Retinopatia Diabética/diagnóstico , Aprendizado de Máquina , Programas de Rastreamento/normas , Oftalmologistas/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Padrões de Referência , Estudos Retrospectivos
6.
Lancet Digit Health ; 5(5): e257-e264, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966118

RESUMO

BACKGROUND: Photographs of the external eye were recently shown to reveal signs of diabetic retinal disease and elevated glycated haemoglobin. This study aimed to test the hypothesis that external eye photographs contain information about additional systemic medical conditions. METHODS: We developed a deep learning system (DLS) that takes external eye photographs as input and predicts systemic parameters, such as those related to the liver (albumin, aspartate aminotransferase [AST]); kidney (estimated glomerular filtration rate [eGFR], urine albumin-to-creatinine ratio [ACR]); bone or mineral (calcium); thyroid (thyroid stimulating hormone); and blood (haemoglobin, white blood cells [WBC], platelets). This DLS was trained using 123 130 images from 38 398 patients with diabetes undergoing diabetic eye screening in 11 sites across Los Angeles county, CA, USA. Evaluation focused on nine prespecified systemic parameters and leveraged three validation sets (A, B, C) spanning 25 510 patients with and without diabetes undergoing eye screening in three independent sites in Los Angeles county, CA, and the greater Atlanta area, GA, USA. We compared performance against baseline models incorporating available clinicodemographic variables (eg, age, sex, race and ethnicity, years with diabetes). FINDINGS: Relative to the baseline, the DLS achieved statistically significant superior performance at detecting AST >36·0 U/L, calcium <8·6 mg/dL, eGFR <60·0 mL/min/1·73 m2, haemoglobin <11·0 g/dL, platelets <150·0 × 103/µL, ACR ≥300 mg/g, and WBC <4·0 × 103/µL on validation set A (a population resembling the development datasets), with the area under the receiver operating characteristic curve (AUC) of the DLS exceeding that of the baseline by 5·3-19·9% (absolute differences in AUC). On validation sets B and C, with substantial patient population differences compared with the development datasets, the DLS outperformed the baseline for ACR ≥300·0 mg/g and haemoglobin <11·0 g/dL by 7·3-13·2%. INTERPRETATION: We found further evidence that external eye photographs contain biomarkers spanning multiple organ systems. Such biomarkers could enable accessible and non-invasive screening of disease. Further work is needed to understand the translational implications. FUNDING: Google.


Assuntos
Aprendizado Profundo , Retinopatia Diabética , Humanos , Estudos Retrospectivos , Cálcio , Retinopatia Diabética/diagnóstico , Biomarcadores , Albuminas
7.
J Diabetes Res ; 2020: 8839376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381600

RESUMO

OBJECTIVE: To evaluate diabetic retinopathy (DR) screening via deep learning (DL) and trained human graders (HG) in a longitudinal cohort, as case spectrum shifts based on treatment referral and new-onset DR. METHODS: We randomly selected patients with diabetes screened twice, two years apart within a nationwide screening program. The reference standard was established via adjudication by retina specialists. Each patient's color fundus photographs were graded, and a patient was considered as having sight-threatening DR (STDR) if the worse eye had severe nonproliferative DR, proliferative DR, or diabetic macular edema. We compared DR screening via two modalities: DL and HG. For each modality, we simulated treatment referral by excluding patients with detected STDR from the second screening using that modality. RESULTS: There were 5,738 patients (12.3% STDR) in the first screening. DL and HG captured different numbers of STDR cases, and after simulated referral and excluding ungradable cases, 4,148 and 4,263 patients remained in the second screening, respectively. The STDR prevalence at the second screening was 5.1% and 6.8% for DL- and HG-based screening, respectively. Along with the prevalence decrease, the sensitivity for both modalities decreased from the first to the second screening (DL: from 95% to 90%, p = 0.008; HG: from 74% to 57%, p < 0.001). At both the first and second screenings, the rate of false negatives for the DL was a fifth that of HG (0.5-0.6% vs. 2.9-3.2%). CONCLUSION: On 2-year longitudinal follow-up of a DR screening cohort, STDR prevalence decreased for both DL- and HG-based screening. Follow-up screenings in longitudinal DR screening can be more difficult and induce lower sensitivity for both DL and HG, though the false negative rate was substantially lower for DL. Our data may be useful for health-economics analyses of longitudinal screening settings.


Assuntos
Aprendizado Profundo , Retinopatia Diabética/diagnóstico por imagem , Fundo de Olho , Interpretação de Imagem Assistida por Computador , Edema Macular/diagnóstico por imagem , Programas de Rastreamento , Fotografação , Idoso , Proliferação de Células , Retinopatia Diabética/epidemiologia , Feminino , Humanos , Incidência , Estudos Longitudinais , Edema Macular/epidemiologia , Masculino , Pessoa de Meia-Idade , Programas Nacionais de Saúde , Valor Preditivo dos Testes , Prevalência , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Tailândia/epidemiologia
8.
Transl Vis Sci Technol ; 8(6): 40, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31867141

RESUMO

PURPOSE: To present and evaluate a remote, tool-based system and structured grading rubric for adjudicating image-based diabetic retinopathy (DR) grades. METHODS: We compared three different procedures for adjudicating DR severity assessments among retina specialist panels, including (1) in-person adjudication based on a previously described procedure (Baseline), (2) remote, tool-based adjudication for assessing DR severity alone (TA), and (3) remote, tool-based adjudication using a feature-based rubric (TA-F). We developed a system allowing graders to review images remotely and asynchronously. For both TA and TA-F approaches, images with disagreement were reviewed by all graders in a round-robin fashion until disagreements were resolved. Five panels of three retina specialists each adjudicated a set of 499 retinal fundus images (1 panel using Baseline, 2 using TA, and 2 using TA-F adjudication). Reliability was measured as grade agreement among the panels using Cohen's quadratically weighted kappa. Efficiency was measured as the number of rounds needed to reach a consensus for tool-based adjudication. RESULTS: The grades from remote, tool-based adjudication showed high agreement with the Baseline procedure, with Cohen's kappa scores of 0.948 and 0.943 for the two TA panels, and 0.921 and 0.963 for the two TA-F panels. Cases adjudicated using TA-F were resolved in fewer rounds compared with TA (P < 0.001; standard permutation test). CONCLUSIONS: Remote, tool-based adjudication presents a flexible and reliable alternative to in-person adjudication for DR diagnosis. Feature-based rubrics can help accelerate consensus for tool-based adjudication of DR without compromising label quality. TRANSLATIONAL RELEVANCE: This approach can generate reference standards to validate automated methods, and resolve ambiguous diagnoses by integrating into existing telemedical workflows.

9.
NPJ Digit Med ; 2: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304372

RESUMO

Deep learning algorithms have been used to detect diabetic retinopathy (DR) with specialist-level accuracy. This study aims to validate one such algorithm on a large-scale clinical population, and compare the algorithm performance with that of human graders. A total of 25,326 gradable retinal images of patients with diabetes from the community-based, nationwide screening program of DR in Thailand were analyzed for DR severity and referable diabetic macular edema (DME). Grades adjudicated by a panel of international retinal specialists served as the reference standard. Relative to human graders, for detecting referable DR (moderate NPDR or worse), the deep learning algorithm had significantly higher sensitivity (0.97 vs. 0.74, p < 0.001), and a slightly lower specificity (0.96 vs. 0.98, p < 0.001). Higher sensitivity of the algorithm was also observed for each of the categories of severe or worse NPDR, PDR, and DME (p < 0.001 for all comparisons). The quadratic-weighted kappa for determination of DR severity levels by the algorithm and human graders was 0.85 and 0.78 respectively (p < 0.001 for the difference). Across different severity levels of DR for determining referable disease, deep learning significantly reduced the false negative rate (by 23%) at the cost of slightly higher false positive rates (2%). Deep learning algorithms may serve as a valuable tool for DR screening.

12.
Org Lett ; 9(14): 2745-8, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17559222

RESUMO

Some novel prolinal dithioacetal derivatives were studied as catalysts for the inverse-electron-demand hetero-Diels-Alder reaction of enolizable aldehydes and beta,gamma-unsaturated alpha-ketophosphonates. The corresponding 5,6-dihydro-4H-pyran-2-ylphosphonates were obtained in good ee values (up to 94% ee).


Assuntos
Organofosfonatos/química , Compostos de Sulfidrila/química , Aldeídos/química , Catálise , Elétrons , Prolina/química , Solventes , Estereoisomerismo
13.
IEEE Trans Pattern Anal Mach Intell ; 38(4): 666-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26959672

RESUMO

Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA