Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456551

RESUMO

Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs ß- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.


Assuntos
Caderinas , Nicho de Células-Tronco , Nicho de Células-Tronco/genética , Caderinas/genética , Caderinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais , Cateninas/genética , Cateninas/metabolismo , Músculo Esquelético/metabolismo , Adesão Celular/genética
2.
J Cell Sci ; 136(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149870

RESUMO

Skeletal muscle stem cells (MuSCs, also called satellite cells) are the source of the robust regenerative capability of this tissue. The hallmark property of MuSCs at homeostasis is quiescence, a reversible state of cell cycle arrest required for long-term preservation of the stem cell population. MuSCs reside between an individual myofiber and an enwrapping basal lamina, defining the immediate MuSC niche. Additional cell types outside the basal lamina, in the interstitial space, also contribute to niche function. Quiescence is actively maintained by multiple niche-derived signals, including adhesion molecules presented from the myofiber surface and basal lamina, as well as soluble signaling factors produced by myofibers and interstitial cell types. In this Cell Science at a Glance article and accompanying poster, we present the most recent information on how niche signals promote MuSC quiescence and provide perspectives for further research.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Nicho de Células-Tronco , Fibras Musculares Esqueléticas , Divisão Celular , Células-Tronco/metabolismo
3.
Bioessays ; 45(5): e2200249, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916774

RESUMO

Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections results in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.


Assuntos
Doenças Musculares , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Nicho de Células-Tronco , Transdução de Sinais , Células-Tronco , Doenças Musculares/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Diferenciação Celular
4.
Dev Biol ; 493: 1-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265686

RESUMO

Hedgehog (HH) signaling is a major driver of tissue patterning during embryonic development through the regulation of a multitude of cell behaviors including cell fate specification, proliferation, migration, and survival. HH ligands signal through the canonical receptor PTCH1 and three co-receptors, GAS1, CDON and BOC. While previous studies demonstrated an overlapping and collective requirement for these co-receptors in early HH-dependent processes, the early embryonic lethality of Gas1;Cdon;Boc mutants precluded an assessment of their collective contribution to later HH-dependent signaling events. Specifically, a collective role for these co-receptors during limb development has yet to be explored. Here, we investigate the combined contribution of these co-receptors to digit specification, limb patterning and long bone growth through limb-specific conditional deletion of Cdon in a Gas1;Boc null background. Combined deletion of Gas1, Cdon and Boc in the limb results in digit loss as well as defects in limb outgrowth and long bone patterning. Taken together, these data demonstrate that GAS1, CDON and BOC are collectively required for HH-dependent patterning and growth of the developing limb.


Assuntos
Moléculas de Adesão Celular , Proteínas Hedgehog , Receptores de Superfície Celular , Feminino , Gravidez , Proteínas de Transporte , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas Hedgehog/metabolismo , Receptores de Superfície Celular/metabolismo , Animais
5.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610637

RESUMO

Many developmental disorders are thought to arise from an interaction between genetic and environmental risk factors. The Hedgehog (HH) signaling pathway regulates myriad developmental processes, and pathway inhibition is associated with birth defects, including holoprosencephaly (HPE). Cannabinoids are HH pathway inhibitors, but little is known of their effects on HH-dependent processes in mammalian embryos, and their mechanism of action is unclear. We report that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) induces two hallmark HH loss-of-function phenotypes (HPE and ventral neural tube patterning defects) in Cdon mutant mice, which have a subthreshold deficit in HH signaling. THC therefore acts as a 'conditional teratogen', dependent on a complementary but insufficient genetic insult. In vitro findings indicate that THC is a direct inhibitor of the essential HH signal transducer smoothened. The canonical THC receptor, cannabinoid receptor-type 1, is not required for THC to inhibit HH signaling. Cannabis consumption during pregnancy may contribute to a combination of risk factors underlying specific developmental disorders. These findings therefore have significant public health relevance.


Assuntos
Padronização Corporal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/toxicidade , Dronabinol/toxicidade , Holoprosencefalia/induzido quimicamente , Receptor Smoothened/metabolismo , Teratogênicos/toxicidade , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Dronabinol/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tubo Neural/efeitos dos fármacos , Tubo Neural/embriologia , Tubo Neural/metabolismo , Transdução de Sinais/efeitos dos fármacos , Teratogênicos/farmacologia
6.
J Appl Clin Med Phys ; 24(11): e14160, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793084

RESUMO

The purpose of this guideline is to provide a list of critical performance tests to assist the Qualified Medical Physicist (QMP) in establishing and maintaining a safe and effective quality assurance (QA) program. The performance tests on a linear accelerator (linac) should be selected to fit the clinical patterns of use of the accelerator and care should be given to perform tests which are relevant to detecting errors related to the specific use of the accelerator. Current recommendations for linac QA were reviewed to determine any changes required to those tests highlighted by the original report as well as considering new components of the treatment process that have become common since its publication. Recommendations are made on the acquisition of reference data, routine establishment of machine isocenter, basing performance tests on clinical use of the linac, working with vendors to establish QA tests and performing tests after maintenance and upgrades. The recommended tests proposed in this guideline were chosen based on consensus of the guideline's committee after assessing necessary changes from the previous report. The tests are grouped together by class of test (e.g., dosimetry, mechanical, etc.) and clinical parameter tested. Implementation notes are included for each test so that the QMP can understand the overall goal of each test. This guideline will assist the QMP in developing a comprehensive QA program for linacs in the external beam radiation therapy setting. The committee sought to prioritize tests by their implication on quality and patient safety. The QMP is ultimately responsible for implementing appropriate tests. In the spirit of the report from American Association of Physicists in Medicine Task Group 100, individual institutions are encouraged to analyze the risks involved in their own clinical practice and determine which performance tests are relevant in their own radiotherapy clinics.


Assuntos
Radiometria , Planejamento da Radioterapia Assistida por Computador , Humanos , Aceleradores de Partículas , Cintilografia , Física
7.
Development ; 146(20)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31519691

RESUMO

Skeletal muscle myofibers are large syncytial cells comprising hundreds of myonuclei, and in situ hybridization experiments have reported a range of transcript localization patterns within them. Although some transcripts are uniformly distributed throughout myofibers, proximity to specialized regions can affect the programming of myonuclei and functional compartmentalization of transcripts. Established techniques are limited by a lack of both sensitivity and spatial resolution, restricting the ability to identify different patterns of gene expression. In this study, we adapted RNAscope fluorescent in situ hybridization technology for use on whole-mount mouse primary myofibers, a preparation that isolates single myofibers with their associated muscle stem cells remaining in their niche. This method can be combined with immunofluorescence, enabling an unparalleled ability to visualize and quantify transcripts and proteins across the length and depth of skeletal myofibers and their associated stem cells. Using this approach, we demonstrate a range of potential uses, including the visualization of specialized transcriptional programming within myofibers, tracking activation-induced transcriptional changes, quantification of stem cell heterogeneity and evaluation of stem cell niche factor transcription patterns.


Assuntos
Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Feminino , Imunofluorescência , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína MyoD/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo
8.
J Physiol ; 598(23): 5351-5377, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32844438

RESUMO

KEY POINTS: Muscle-specific genetic ablation of p21-activated kinase (PAK)2, but not whole-body PAK1 knockout, impairs glucose tolerance in mice. Insulin-stimulated glucose uptake partly relies on PAK2 in glycolytic extensor digitorum longus muscle By contrast to previous reports, PAK1 is dispensable for insulin-stimulated glucose uptake in mouse muscle. ABSTRACT: The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle and PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle. Interestingly, PAK1 has been suggested to be required for insulin-stimulated glucose transporter 4 translocation in mouse skeletal muscle. Therefore, the present study aimed to examine the role of PAK1 in insulin-stimulated muscle glucose uptake. The pharmacological inhibitor of group I PAKs, IPA-3 partially reduced (-20%) insulin-stimulated glucose uptake in isolated mouse soleus muscle (P < 0.001). However, because there was no phenotype with genetic ablation of PAK1 alone, consequently, the relative requirement for PAK1 and PAK2 in whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake was investigated. Whole-body respiratory exchange ratio was largely unaffected in whole-body PAK1 knockout (KO), muscle-specific PAK2 KO and in mice with combined whole-body PAK1 KO and muscle-specific PAK2 KO. By contrast, glucose tolerance was mildly impaired in mice lacking PAK2 specifically in muscle, but not PAK1 KO mice. Moreover, while PAK1 KO muscles displayed normal insulin-stimulated glucose uptake in vivo and in isolated muscle, insulin-stimulated glucose uptake was slightly reduced in isolated glycolytic extensor digitorum longus muscle lacking PAK2 alone (-18%) or in combination with PAK1 KO (-12%) (P < 0.05). In conclusion, glucose tolerance and insulin-stimulated glucose uptake partly rely on PAK2 in glycolytic mouse muscle, whereas PAK1 is dispensable for whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake.


Assuntos
Insulina , Quinases Ativadas por p21 , Animais , Transporte Biológico , Glucose/metabolismo , Insulina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Quinases Ativadas por p21/metabolismo
9.
Hum Mol Genet ; 26(1): 65-78, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798115

RESUMO

Lamina-associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that has been implicated in striated muscle maintenance. Mutations in its gene have been linked to muscular dystrophy and cardiomyopathy. As germline deletion of the gene encoding LAP1 is perinatal lethal, we explored its potential role in myogenic differentiation and development by generating a conditional knockout mouse in which the protein is depleted from muscle progenitors at embryonic day 8.5 (Myf5-Lap1CKO mice). Although cultured myoblasts lacking LAP1 demonstrated defective terminal differentiation and altered expression of muscle regulatory factors, embryonic myogenesis and formation of skeletal muscle occurred in both mice with a Lap1 germline deletion and Myf5-Lap1CKO mice. However, skeletal muscle fibres were hypotrophic and their nuclei were morphologically abnormal with a wider perinuclear space than normal myonuclei. Myf5-Lap1CKO mouse skeletal muscle contained fewer satellite cells than normal and these cells had evidence of reduced myogenic potential. Abnormalities in signalling pathways required for postnatal hypertrophic growth were also observed in skeletal muscles of these mice. Our results demonstrate that early embryonic depletion of LAP1 does not impair myogenesis but that it is necessary for postnatal skeletal muscle growth.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Desenvolvimento Muscular/genética , Músculo Esquelético/citologia , Distrofias Musculares/embriologia , Mioblastos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Fatores de Regulação Miogênica
10.
Am J Med Genet C Semin Med Genet ; 178(2): 140-150, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29749693

RESUMO

Holoprosencephaly (HPE) is a common developmental defect caused by failure to define the midline of the forebrain and/or midface. HPE is associated with heterozygous mutations in Nodal and Sonic hedgehog (SHH) pathway components, but clinical presentation is highly variable, and many mutation carriers are unaffected. It is therefore thought that such mutations interact with more common modifiers, genetic and/or environmental, to produce severe patterning defects. Modifiers are difficult to identify, as their effects are context-dependent and occur within the complex genetic and environmental landscapes that characterize human populations. This has made a full understanding of HPE etiology challenging. We discuss here the use of mice, a genetically tractable model sensitive to teratogens, as a system to address this challenge. Mice carrying mutations in human HPE genes often display wide variations in phenotypic penetrance and expressivity when placed on different genetic backgrounds, demonstrating the existence of silent HPE modifier genes. Studies with mouse lines carrying SHH pathway mutations on appropriate genetic backgrounds have led to identification of both genetic and environmental modifiers that synergize with the mutations to produce a spectrum of HPE phenotypes. These models favor a scenario in which multiple modifying influences-both genetic and environmental, sensitizing and protective-interact with bona fide HPE mutations to grade phenotypic outcomes. Despite the complex interplay of HPE risk factors, mouse models have helped establish some clear concepts in HPE etiology. A combination of mouse and human cohort studies should improve our understanding of this fascinating and medically important issue.


Assuntos
Holoprosencefalia/etiologia , Modelos Biológicos , Herança Multifatorial , Animais , Biomarcadores , Modelos Animais de Doenças , Epistasia Genética , Interação Gene-Ambiente , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoprosencefalia/diagnóstico , Holoprosencefalia/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteína Nodal/genética , Proteína Nodal/metabolismo , Fenótipo , Transdução de Sinais
11.
Hum Mutat ; 38(11): 1464-1470, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28677295

RESUMO

Holoprosencephaly (HPE), a common developmental defect of the forebrain and midface, has a complex etiology. Heterozygous, loss-of-function mutations in the sonic hedgehog (SHH) pathway are associated with HPE. However, mutation carriers display highly variable clinical presentation, leading to an "autosomal dominant with modifier" model, in which the penetrance and expressivity of a predisposing mutation is graded by genetic or environmental modifiers. Such modifiers have not been identified. Boc encodes a SHH coreceptor and is a silent HPE modifier gene in mice. Here, we report the identification of missense BOC variants in HPE patients. Consistent with these alleles functioning as HPE modifiers, individual variant BOC proteins had either loss- or gain-of-function properties in cell-based SHH signaling assays. Therefore, in addition to heterozygous loss-of-function mutations in specific SHH pathway genes and an ill-defined environmental component, our findings identify a third variable in HPE: low-frequency modifier genes, BOC being the first identified.


Assuntos
Genes Modificadores , Holoprosencefalia/genética , Imunoglobulina G/genética , Receptores de Superfície Celular/genética , Animais , Expressão Gênica , Variação Genética , Holoprosencefalia/metabolismo , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Camundongos , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo
12.
Adv Exp Med Biol ; 1006: 361-373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28865032

RESUMO

Myoblast differentiation is a complex process. As myoblasts differentiate into myofibers, they acquire a cell type-specific transcriptional program, irreversibly exit the cell cycle, and dramatically change their morphology. The morphological changes include cell elongation, alignment, and fusion into syncytial myofibers. Several lines of evidence suggest that these events may be co-regulated. However, the mechanisms that coordinate major alterations in a cell's transcriptome and its shape are not well understood. Muscle-specific transcription is controlled by proteins of the MyoD family, transcription factors whose activity is regulated by specific signal transduction pathways, including the p38 MAP kinase pathway. In a search for genes that might play a role in linking myogenic signal transduction, cytoskeletal regulation, and myoblast differentiation, Dbn1 (encoding the actin regulator drebrin) was identified. Dbn1 expression is induced during myoblast differentiation, in a p38 MAP kinase- and MyoD- dependent manner. RNAi-mediated depletion of drebrin, or treatment with a chemical drebrin inhibitor, resulted in a similar phenotype in myoblasts: defective differentiation, with low levels of early and late differentiation markers and inefficient production of myofibers. Drebrin localizes at sites of cell-cell contact and cell extensions, locations that are also enriched for F-actin. Drebrin may be important in linking transcriptional and morphological aspects of myoblast differentiation.


Assuntos
Diferenciação Celular/genética , Proteína MyoD/genética , Neuropeptídeos/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Neuropeptídeos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
PLoS Biol ; 11(8): e1001623, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940460

RESUMO

The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway-Patched-Smoothened-Gli-has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH) expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON), a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH-CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Moléculas de Adesão Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Proteínas Hedgehog/genética , Humanos , Masculino , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/genética
14.
J Pers ; 84(2): 165-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25393028

RESUMO

Findings from confederate paradigms predict that mimicry is an adaptive route to social connection for rejection-sensitive individuals (Lakin, Chartrand, & Arkin, 2008). However, dyadic perspectives predict that whether mimicry leads to perceived connection depends on the rejection sensitivity (RS) of both partners in an interaction. We investigated these predictions in 50 college women who completed a dyadic cooperative task in which members were matched or mismatched in being dispositionally high or low in RS. We used a psycholinguistics paradigm to assess, through independent listeners' judgments (N = 162), how much interacting individuals accommodate phonetic aspects of their speech toward each other. Results confirmed predictions from confederate paradigms in matched RS dyads. However, mismatched dyads showed an asymmetry in levels of accommodation and perceived connection: Those high in RS accommodated more than their low-RS partner but emerged feeling less connected. Mediational analyses indicated that low-RS individuals' nonaccommodation in mismatched dyads helped explain their high-RS partners' relatively low perceived connection to them. Establishing whether mimicry is an adaptive route to social connection requires analyzing mimicry as a dyadic process influenced by the needs of each dyad member.


Assuntos
Relações Interpessoais , Rejeição em Psicologia , Fala , Feminino , Humanos , Masculino
15.
PLoS Genet ; 8(10): e1002999, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071453

RESUMO

Holoprosencephaly (HPE) is a remarkably common congenital anomaly characterized by failure to define the midline of the forebrain and midface. HPE is associated with heterozygous mutations in Sonic hedgehog (SHH) pathway components, but clinical presentation is extremely variable and many mutation carriers are unaffected. It has been proposed that these observations are best explained by a multiple-hit model, in which the penetrance and expressivity of an HPE mutation is enhanced by a second mutation or the presence of cooperating, but otherwise silent, modifier genes. Non-genetic risk factors are also implicated in HPE, and gene-environment interactions may provide an alternative multiple-hit model to purely genetic multiple-hit models; however, there is little evidence for this contention. We report here a mouse model in which there is dramatic synergy between mutation of a bona fide HPE gene (Cdon, which encodes a SHH co-receptor) and a suspected HPE teratogen, ethanol. Loss of Cdon and in utero ethanol exposure in 129S6 mice give little or no phenotype individually, but together produce defects in early midline patterning, inhibition of SHH signaling in the developing forebrain, and a broad spectrum of HPE phenotypes. Our findings argue that ethanol is indeed a risk factor for HPE, but genetically predisposed individuals, such as those with SHH pathway mutations, may be particularly susceptible. Furthermore, gene-environment interactions are likely to be important in the multifactorial etiology of HPE.


Assuntos
Moléculas de Adesão Celular/genética , Etanol/efeitos adversos , Holoprosencefalia/induzido quimicamente , Holoprosencefalia/genética , Exposição Materna/efeitos adversos , Mutação , Transdução de Sinais , Animais , Encéfalo/anormalidades , Anormalidades Craniofaciais/induzido quimicamente , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/induzido quimicamente , Deficiências do Desenvolvimento/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Goosecoid/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Holoprosencefalia/embriologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Fenótipo , Transdução de Sinais/efeitos dos fármacos
16.
Am J Hum Genet ; 89(2): 231-40, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21802063

RESUMO

Holoprosencephaly (HPE), a common human congenital anomaly defined by a failure to delineate the midline of the forebrain and/or midface, is associated with diminished Sonic hedgehog (SHH)-pathway activity in development of these structures. SHH signaling is regulated by a network of ligand-binding factors, including the primary receptor PTCH1 and the putative coreceptors, CDON (also called CDO), BOC, and GAS1. Although binding of SHH to these receptors promotes pathway activity, it is not known whether interactions between these receptors are important. We report here identification of missense CDON mutations in human HPE. These mutations diminish CDON's ability to support SHH-dependent gene expression in cell-based signaling assays. The mutations occur outside the SHH-binding domain of CDON, and the encoded variant CDON proteins do not display defects in binding to SHH. In contrast, wild-type CDON associates with PTCH1 and GAS1, but the variants do so inefficiently, in a manner that parallels their activity in cell-based assays. Our findings argue that CDON must associate with both ligand and other hedgehog-receptor components, particularly PTCH1, for signaling to occur and that disruption of the latter interactions is a mechanism of HPE.


Assuntos
Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas Hedgehog/metabolismo , Holoprosencefalia/genética , Mutação/genética , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Moléculas de Adesão Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Ligação Proteica , Sequências Repetitivas de Aminoácidos , Proteínas Supressoras de Tumor/química
17.
Elife ; 132024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842166

RESUMO

Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.


Assuntos
Sobrevivência Celular , Células Endoteliais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Camundongos Endogâmicos C57BL , Masculino
18.
Proc Natl Acad Sci U S A ; 107(9): 4212-7, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20160094

RESUMO

The p38alpha/beta mitogen-activated protein kinase (MAPK) pathway promotes muscle-specific gene expression and myoblast differentiation but how pathway activity is initiated during these processes is poorly understood. During myoblast differentiation, the intracellular region of the promyogenic cell surface protein Cdo (also known as Cdon) binds to Bnip-2 and JLP, scaffold proteins for Cdc42 and p38alpha/beta MAPK, respectively. The Bnip-2/Cdc42 and JLP/p38alpha/beta complexes associate in a Cdo-dependent manner, resulting in Bnip-2/Cdc42-dependent p38alpha/beta activation and stimulation of cell differentiation. Although the Cdo ectodomain binds to several different proteins, it is unclear how Cdo-dependent p38alpha/beta activation is initiated. In myoblasts, Cdo interacts with the cell-cell adhesion molecule N-cadherin. Cdo also binds directly to the secreted morphogen Sonic hedgehog (Shh) to promote Shh pathway signaling. We report here that N-cadherin ligation activates p38alpha/beta in myoblasts in a Cdo-, Bnip-2-, and JLP-dependent manner. Furthermore, these proteins and activated Cdc42 cluster at sites of N-cadherin ligation. In contrast, neither JLP nor Bnip-2 is associated with Cdo bound to Shh, and Shh does not activate p38alpha/beta in myoblasts. Taken together, these results link cadherin-based cell-cell adhesion to a defined signaling pathway (Cdo --> p38alpha/beta) that directly regulates a cell-type-specific differentiation program. Furthermore, they are consistent with a model whereby Cdo serves as a multifunctional coreceptor with mechanistically distinct roles in multiple signaling pathways.


Assuntos
Caderinas/metabolismo , Proteínas Hedgehog/metabolismo , Sistema de Sinalização das MAP Quinases , Músculo Esquelético/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Músculo Esquelético/citologia , Ligação Proteica
19.
Dev Dyn ; 241(3): 627-37, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22275192

RESUMO

BACKGROUND: Digit patterning integrates signaling by the Sonic Hedgehog (SHH), fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) pathways. GLI3, a component of the SHH pathway, is a major regulator of digit number and identity. Neogenin (encoded by Neo1) is a cell surface protein that serves to transduce signals from several ligands, including BMPs, in various developmental contexts. Although neogenin is implicated in BMP signaling, it has not been linked to SHH signaling and its role in digit patterning is unknown. RESULTS: We report that Neo1 mutant mice have preaxial polydactyly with low penetrance. Expression of SHH target genes, but not BMP target genes, is altered in Neo1 mutant limb buds. Analysis of mice carrying mutations in both Neo1 and Gli3 reveals that, although neogenin plays a role in constraint of digit numbers, suppressing polydactyly, it is also required for the severe polydactyly caused by loss of GLI3. Furthermore, embryo fibroblasts from Neo1 mutant mice are sensitized to SHH pathway activation in vitro. CONCLUSIONS: Our findings indicate that neogenin regulates SHH signaling in the limb bud to achieve proper digit patterning.


Assuntos
Padronização Corporal , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/metabolismo , Polidactilia/genética , Extremidade Superior/embriologia , Animais , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Transdução de Sinais , Deformidades Congênitas das Extremidades Superiores/genética , Proteína GLI1 em Dedos de Zinco
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA