Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2210490120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574651

RESUMO

γδ T cells are involved in the control of Staphylococcus aureus infection, but their importance in protection compared to other T cells is unclear. We used a mouse model of systemic S. aureus infection associated with high bacterial load and persistence in the kidney. Infection caused fulminant accumulation of γδ T cells in the kidney. Renal γδ T cells acquired tissue residency and were maintained in high numbers during chronic infection. At day 7, up to 50% of renal γδ T cells produced IL-17A in situ and a large fraction of renal γδ T cells remained IL-17A+ during chronic infection. Controlled depletion revealed that γδ T cells restricted renal S. aureus replication in the acute infection and provided protection during chronic renal infection and upon reinfection. Our results demonstrate that kidney-resident γδ T cells are nonredundant in limiting local S. aureus growth during chronic infection and provide enhanced protection against reinfection.


Assuntos
Interleucina-17 , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus , Receptores de Antígenos de Linfócitos T gama-delta , Infecção Persistente , Reinfecção , Rim , Camundongos Endogâmicos C57BL
2.
Eur J Immunol ; : e2451069, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289824

RESUMO

Immune-mediated kidney diseases, including glomerulonephritis (GN), represent a diverse spectrum of disorders characterized by inflammation within the glomerulus and other renal compartments. Despite recent advances, the immunopathogenesis of these diseases remains incompletely understood. Current therapeutic approaches based on nonspecific immunosuppression often result in suboptimal outcomes and significant side effects, highlighting the need for tailored interventions. The complexity of the immune system extends beyond classical T-cell immunity, with the emergence of unconventional T cells - γδ T cells, NKT cells, and MAIT cells - that exhibit a semi-invariant nature and unique functions that bridge innate and adaptive immunity. γδ T cells exhibit unique homing and activation mechanisms and respond to different ligands, implying a multifaceted role in immune regulation. The understanding of γδ T-cell involvement in kidney disease lags behind conventional T-cell research. However, advances in immune cell analysis technologies offer promising avenues for elucidating their precise functions. This review synthesizes the current knowledge on γδ T cells in renal diseases, explores potential therapeutic strategies, and presents a roadmap for future research directions.

3.
Hepatology ; 80(4): 844-858, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441998

RESUMO

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis. We showed an elevated interferon γ response in patients with primary sclerosing cholangitis and in multidrug resistance protein 2-deficient ( Mdr2-/- ) mice developing sclerosing cholangitis. Interferon γ induced expression of the cytotoxic molecules granzyme B (GzmB) and TRAIL in hepatic lymphocytes and mediated liver fibrosis in sclerosing cholangitis. APPROACH AND RESULTS: In patient samples and Mdr2-/- mice, we identified lymphocyte clusters with a cytotoxic gene expression profile using single-cell RNA-seq and cellular indexing of transcriptomes and epitopes by sequencing analyses combined with multi-parameter flow cytometry. CD8 + T cells and NK cells showed increased expression of GzmB and TRAIL in sclerosing cholangitis. Depletion of CD8 + T cells ameliorated disease severity in Mdr2-/- mice. By using Mdr2-/- × Gzmb-/- and Mdr2-/- × Tnfsf10-/- mice, we investigated the significance of GzmB and TRAIL for disease progression in sclerosing cholangitis. Interestingly, the lack of GzmB resulted in reduced cholangiocyte apoptosis, liver injury, and fibrosis. In contrast, sclerosing cholangitis was aggravated in the absence of TRAIL. This correlated with elevated GzmB and interferon γ expression by CD8 + T cells and NK cells enhanced T-cell survival, and increased apoptosis and expansion of cholangiocytes. CONCLUSIONS: GzmB induces apoptosis and fibrosis in sclerosing cholangitis, whereas TRAIL regulates inflammatory and cytotoxic immune responses, subsequently leading to reduced liver injury and fibrosis.


Assuntos
Linfócitos T CD8-Positivos , Colangite Esclerosante , Granzimas , Ligante Indutor de Apoptose Relacionado a TNF , Granzimas/metabolismo , Colangite Esclerosante/imunologia , Colangite Esclerosante/patologia , Animais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Camundongos , Humanos , Linfócitos T CD8-Positivos/imunologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Masculino , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos Knockout , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
4.
Immunity ; 45(5): 1078-1092, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851911

RESUMO

Th17 cells are most abundant in the gut, where their presence depends on the intestinal microbiota. Here, we examined whether intestinal Th17 cells contribute to extra-intestinal Th17 responses in autoimmune kidney disease. We found high frequencies of Th17 cells in the kidneys of patients with antineutrophil cytoplasmatic antibody (ANCA)-associated glomerulonephritis. We utilized photoconversion of intestinal cells in Kaede mice to track intestinal T cell mobilization upon glomerulonephritis induction, and we found that Th17 cells egress from the gut in a S1P-receptor-1-dependent fashion and subsequently migrate to the kidney via the CCL20/CCR6 axis. Depletion of intestinal Th17 cells in germ-free and antibiotic-treated mice ameliorated renal disease, whereas expansion of these cells upon Citrobacter rodentium infection exacerbated pathology. Thus, in some autoimmune settings, intestinal Th17 cells migrate into target organs, where they contribute to pathology. Targeting the intestinal Th17 cell "reservoir" may present a therapeutic strategy for these autoimmune disorders.


Assuntos
Doenças Autoimunes/imunologia , Quimiotaxia de Leucócito/imunologia , Glomerulonefrite/imunologia , Receptores de Lisoesfingolipídeo/imunologia , Células Th17/imunologia , Animais , Citrobacter rodentium , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/imunologia , Citometria de Fluxo , Humanos , Intestinos/imunologia , Rim/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Esfingosina-1-Fosfato
5.
J Immunol ; 211(11): 1669-1679, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850963

RESUMO

T regulatory type 1 (Tr1) cells, which are defined by their regulatory function, lack of Foxp3, and high expression of IL-10, CD49b, and LAG-3, are known to be able to suppress Th1 and Th17 in the intestine. Th1 and Th17 cells are also the main drivers of crescentic glomerulonephritis (GN), the most severe form of renal autoimmune disease. However, whether Tr1 cells emerge in renal inflammation and, moreover, whether they exhibit regulatory function during GN have not been thoroughly investigated yet. To address these questions, we used a mouse model of experimental crescentic GN and double Foxp3mRFP IL-10eGFP reporter mice. We found that Foxp3neg IL-10-producing CD4+ T cells infiltrate the kidneys during GN progression. Using single-cell RNA sequencing, we could show that these cells express the core transcriptional factors characteristic of Tr1 cells. In line with this, Tr1 cells showed a strong suppressive activity ex vivo and were protective in experimental crescentic GN in vivo. Finally, we could also identify Tr1 cells in the kidneys of patients with antineutrophil cytoplasmic autoantibody-associated GN and define their transcriptional profile. Tr1 cells are currently used in several immune-mediated inflammatory diseases, such as T-cell therapy. Thus, our study provides proof of concept for Tr1 cell-based therapies in experimental GN.


Assuntos
Glomerulonefrite , Linfócitos T Reguladores , Humanos , Camundongos , Animais , Interleucina-10/metabolismo , Células Th17 , Rim/metabolismo , Fatores de Transcrição/metabolismo , Células Th1
6.
Mol Cancer ; 23(1): 93, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720314

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise for unraveling tumor heterogeneity and understanding treatment resistance. However, conventional methods, especially in cancers like non-small cell lung cancer (NSCLC), often yield low CTC numbers, hindering comprehensive analyses. This study addresses this limitation by employing diagnostic leukapheresis (DLA) to cancer patients, enabling the screening of larger blood volumes. To leverage DLA's full potential, this study introduces a novel approach for CTC enrichment from DLAs. METHODS: DLA was applied to six advanced stage NSCLC patients. For an unbiased CTC enrichment, a two-step approach based on negative depletion of hematopoietic cells was used. Single-cell (sc) whole-transcriptome sequencing was performed, and CTCs were identified based on gene signatures and inferred copy number variations. RESULTS: Remarkably, this innovative approach led to the identification of unprecedented 3,363 CTC transcriptomes. The extensive heterogeneity among CTCs was unveiled, highlighting distinct phenotypes related to the epithelial-mesenchymal transition (EMT) axis, stemness, immune responsiveness, and metabolism. Comparison with sc transcriptomes from primary NSCLC cells revealed that CTCs encapsulate the heterogeneity of their primary counterparts while maintaining unique CTC-specific phenotypes. CONCLUSIONS: In conclusion, this study pioneers a transformative method for enriching CTCs from DLA, resulting in a substantial increase in CTC numbers. This allowed the creation of the first-ever single-cell whole transcriptome in-depth characterization of the heterogeneity of over 3,300 NSCLC-CTCs. The findings not only confirm the diagnostic value of CTCs in monitoring tumor heterogeneity but also propose a CTC-specific signature that can be exploited for targeted CTC-directed therapies in the future. This comprehensive approach signifies a major leap forward, positioning CTCs as a key player in advancing our understanding of cancer dynamics and paving the way for tailored therapeutic interventions.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Leucaférese , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Fenótipo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Análise de Célula Única/métodos , Transcriptoma , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
7.
PLoS Pathog ; 18(4): e1010430, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446923

RESUMO

Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a major health burden worldwide. CD4+ T helper cells are involved in the immune response to S. aureus by supporting antibody production and phagocytosis. In particular, Th1 and Th17 cells secreting IFN-γ and IL-17A, are involved in the control of systemic S. aureus infections in humans and mice. To investigate the role of T cells in severe S. aureus infections, we established a mouse sepsis model in which the kidney was identified to be the organ with the highest bacterial load and abundance of Th17 cells. In this model, IL-17A but not IFN-γ was required for bacterial control. Using Il17aCre × R26YFP mice we could show that Th17 fate cells produce Th17 and Th1 cytokines, indicating a high degree of Th17 cell plasticity. Single cell RNA-sequencing of renal Th17 fate cells uncovered their heterogeneity and identified a cluster with a Th1 expression profile within the Th17 cell population, which was absent in mice with T-bet/Tbx21-deficiency in Th17 cells (Il17aCre x R26eYFP x Tbx21-flox). Blocking Th17 to Th1 transdifferentiation in Th17 fate cells in these mice resulted in increased S. aureus tissue loads. In summary, we highlight the impact of Th17 cells in controlling systemic S. aureus infections and show that T-bet expression by Th17 cells is required for bacterial clearance. While targeting the Th17 cell immune response is an important therapeutic option in autoimmunity, silencing Th17 cells might have detrimental effects in bacterial infections.


Assuntos
Sepse , Infecções Estafilocócicas , Proteínas com Domínio T/metabolismo , Animais , Plasticidade Celular , Humanos , Interleucina-17 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Staphylococcus aureus , Células Th1 , Células Th17
8.
Am J Nephrol ; 55(2): 214-224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37742620

RESUMO

INTRODUCTION: The chemokine receptor CCR4 is expressed by diverse CD4+ T cell subsets including regulatory T cells (Tregs) but its functional importance for leukocyte recruitment and the relevance of its two corresponding chemokines CCL17 and CCL22 have not been studied in immune-mediated crescentic glomerulonephritis (cGN). METHODS: Utilizing the single-cell RNA sequencing (scRNAseq) data in analyzing leukocytes isolated from both human and murine nephritic kidneys, we identified CCL17 as a potential therapeutic target in immune-mediated renal disease. Using a mouse model of murine cGN, we then delineated the effects of targeting CCL17 by neutralizing antibodies and in Ccl17 gene-deficient mice. RESULTS: Unsupervised scRNAseq analyses identified the CCL17-CCR4 axis as a mechanism potentially involved in renal T-cell migration. Analyses of functional kidney impairment and histopathological kidney damage revealed an attenuation of crescentic GN in anti-CCL17 antibody-treated mice which was corroborated using in Ccl17 gene-deficient mice. Immunohistochemical analyses revealed that these changes were accompanied by an affected renal Treg recruitment in both experimental approaches. CONCLUSION: The chemokine receptor CCR4 and its corresponding chemokine CCL17 are expressed in human and murine cGN and targeting the CCR4-CCL17 axis by neutralizing antibodies as well as Ccl17 gene deficiency led to increased renal Treg recruitment and reduced histological and functional kidney damage in murine cGN.


Assuntos
Quimiocina CCL17 , Glomerulonefrite , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Rim , Monócitos , Receptores CCR4 , Receptores de Quimiocinas , Linfócitos T Reguladores
9.
J Am Soc Nephrol ; 34(6): 1003-1018, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913357

RESUMO

SIGNIFICANCE STATEMENT: T-cell infiltration is a hallmark of crescentic GN (cGN), often caused by ANCA-associated vasculitis. Pathogenic T-cell subsets, their clonality, and downstream effector mechanisms leading to kidney injury remain to be fully elucidated. Single-cell RNA sequencing and T-cell receptor sequencing revealed activated, clonally expanded cytotoxic CD4 + and CD8 + T cells in kidneys from patients with ANCA-associated cGN. In experimental cGN, kidney-infiltrating CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), which induced apoptosis in renal tissue cells by activation of procaspase-3, and aggravated disease pathology. These findings describe a pathogenic function of (clonally expanded) cytotoxic T cells in cGN and identify GzmB as a mediator and potential therapeutic target in immune-mediated kidney disease. BACKGROUND: Crescentic GN (cGN) is an aggressive form of immune-mediated kidney disease that is an important cause of end stage renal failure. Antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis is a common cause. T cells infiltrate the kidney in cGN, but their precise role in autoimmunity is not known. METHODS: Combined single-cell RNA sequencing and single-cell T-cell receptor sequencing were conducted on CD3 + T cells isolated from renal biopsies and blood of patients with ANCA-associated cGN and from kidneys of mice with experimental cGN. Functional and histopathological analyses were performed with Cd8a-/- and GzmB-/- mice. RESULTS: Single-cell analyses identified activated, clonally expanded CD8 + and CD4 + T cells with a cytotoxic gene expression profile in the kidneys of patients with ANCA-associated cGN. Clonally expanded CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), in the mouse model of cGN. Deficiency of CD8 + T cells or GzmB ameliorated the course of cGN. CD8 + T cells promoted macrophage infiltration and GzmB activated procaspase-3 in renal tissue cells, thereby increasing kidney injury. CONCLUSIONS: Clonally expanded cytotoxic T cells have a pathogenic function in immune-mediated kidney disease.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Animais , Camundongos , Caspase 3 , Granzimas , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Anticorpos Anticitoplasma de Neutrófilos , Glomerulonefrite Membranoproliferativa/complicações , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/complicações , Doença Aguda
10.
Kidney Int ; 104(1): 74-89, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36924892

RESUMO

Previous studies have identified a unique Treg population, which expresses the Th17 characteristic transcription factor RORγt. These RORγt+ Tregs possess enhanced immunosuppressive capacity, which endows them with great therapeutic potential. However, as a caveat, they are also capable of secreting pro-inflammatory IL-17A. Since the sum function of RORγt+ Tregs in glomerulonephritis (GN) remains unknown, we studied the effects of their absence. Purified CD4+ T cell populations, containing or lacking RORγt+ Tregs, were transferred into immunocompromised RAG1 knockout mice and the nephrotoxic nephritis model of GN was induced. Absence of RORγt+ Tregs significantly aggravated kidney injury, demonstrating overall kidney-protective properties. Analyses of immune responses showed that RORγt+ Tregs were broadly immunosuppressive with no preference for a particular type of T cell response. Further characterization revealed a distinct functional and transcriptional profile, including enhanced production of IL-10. Expression of the chemokine receptor CCR6 marked a particularly potent subset, whose absence significantly worsened GN. As an underlying mechanism, we found that chemokine CCL20 acting through receptor CCR6 signaling mediated expansion and activation of RORγt+ Tregs. Finally, we also detected an increase of CCR6+ Tregs in kidney biopsies, as well as enhanced secretion of chemokine CCL20 in 21 patients with anti-neutrophil cytoplasmic antibody associated GN compared to that of 31 healthy living donors, indicating clinical relevance. Thus, our data characterize RORγt+ Tregs as anti-inflammatory mediators of GN and identify them as promising target for Treg directed therapies.


Assuntos
Glomerulonefrite , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Rim/patologia , Camundongos Knockout , Células Th17 , Receptores CCR6/genética , Receptores CCR6/metabolismo
11.
J Am Soc Nephrol ; 32(12): 3081-3098, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35167487

RESUMO

BACKGROUND: IL-17A-producing CD4+ T helper (TH17) cells play a critical role in autoimmune and chronic inflammatory diseases, such as crescentic GN. The proinflammatory effects of IL-17 are mediated by the activation of the IL-17RA/IL-17RC complex. Although the expression of these receptors on epithelial and endothelial cells is well characterized, the IL-17 receptor expression pattern and function on hematopoietic cells, e.g., CD4+ T cell subsets, remains to be elucidated. METHODS: Crescentic GN (nephrotoxic nephritis) was induced in IL-17A, IFNγ, and Foxp3 triple-reporter mice for sorting of renal CD4+ T cell subsets and subsequent single-cell RNA sequencing. Moreover, we generated TH17 cell-specific IL-17RA and IL-17RC gene-deficient mice and studied the functional role of IL-17 signaling in TH17 cells in crescentic GN, imiquimod-induced psoriasis, and in the CD4+CD45RBhigh T cell transfer colitis model. RESULTS: We identified a specific expression of the IL-17 receptor A/C complex on CD4+ TH17 cells. Single-cell RNA sequencing of TH17 cells revealed the activation of the IL-17 receptor signaling pathway in experimental crescentic GN. Disruption of the IL-17RC signaling pathway in CD4+ T cells and, most importantly, specifically in CD4+ TH17 cells, potentiates the IL-17 cytokine response and results in an accelerated course of experimental crescentic GN. Comparable results were observed in experimental models of psoriasis and colitis. CONCLUSIONS: Our findings indicate that IL-17 receptor C signaling has a previously unrecognized function in the regulation of CD4+ TH17 cells and in the control of organ-specific autoimmunity and might provide new insights into the development of more efficient anti-TH17 treatment strategies.


Assuntos
Glomerulonefrite/etiologia , Receptores de Interleucina/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Glomerulonefrite/imunologia , Interleucina-17/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/etiologia , Receptores de Interleucina-17/fisiologia , Transdução de Sinais/fisiologia , Células Th17/imunologia
12.
J Hepatol ; 75(2): 414-423, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33774059

RESUMO

BACKGROUND & AIMS: Little is known about the composition of intrahepatic immune cells and their contribution to the pathogenesis of primary sclerosing cholangitis (PSC). Herein, we aimed to create an atlas of intrahepatic T cells and thereby perform an in-depth characterization of T cells in inflamed human liver. METHODS: Different single-cell RNA sequencing methods were combined with in silico analyses on intrahepatic and peripheral T cells from patients with PSC (n = 11) and healthy donors (HDs, n = 4). Multi-parameter flow cytometry and functional in vitro experiments were conducted on samples from patients with PSC (n = 24), controls with other liver diseases and HDs. RESULTS: We identified a population of intrahepatic naive-like CD4+ T cells, which was present in all liver diseases tested, but particularly expanded in PSC. This population had a transcriptome and T cell receptor repertoire similar to circulating naive T cells but expressed a set of genes associated with tissue residency. Their periductal location supported the concept of tissue-resident naive-like T cells in livers of patients with PSC. Trajectory inference suggested that these cells had the developmental propensity to acquire a T helper 17 (TH17) polarization state. Functional and chromatin accessibility experiments revealed that circulating naive T cells in patients with PSC were predisposed to polarize towards TH17 cells. CONCLUSION: We report the first atlas of intrahepatic T cells in PSC, which led to the identification of a previously unrecognized population of tissue-resident naive-like T cells in the inflamed human liver and to the finding that naive CD4+ T cells in PSC harbour the propensity to develop into TH17 cells. LAY SUMMARY: The composition of intrahepatic immune cells in primary sclerosing cholangitis (PSC) and their contribution to disease pathogenesis is widely unknown. We analysed intrahepatic T cells and identified a previously uncharacterized population of liver-resident CD4+ T cells which are expanded in the livers of patients with PSC compared to healthy liver tissue and other liver diseases. These cells are likely to contribute to the pathogenesis of PSC and could be targeted in novel therapeutic approaches.


Assuntos
Colangite Esclerosante/fisiopatologia , Hepatócitos/fisiologia , Linfócitos T/fisiologia , Colangite Esclerosante/enzimologia , Humanos , Fígado/patologia , Fígado/fisiopatologia , Sequenciamento do Exoma/métodos
13.
Cell Tissue Res ; 385(2): 323-333, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33937944

RESUMO

The presence of immune cells is a morphological hallmark of rapidly progressive glomerulonephritis, a disease group that includes anti-glomerular basement membrane glomerulonephritis, lupus nephritis, and anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. The cellular infiltrates include cells from both the innate and the adaptive immune responses. The latter includes CD4+ and CD8+ T cells. In the past, CD4+ T cell subsets were viewed as terminally differentiated lineages with limited flexibility. However, it is now clear that Th17 cells can in fact have a high degree of plasticity and convert, for example, into pro-inflammatory Th1 cells or anti-inflammatory Tr1 cells. Interestingly, Th17 cells in experimental GN display limited spontaneous plasticity. Here we review the literature of CD4+ T cell plasticity focusing on immune-mediated kidney disease. We point out the key findings of the past decade, in particular that targeting pathogenic Th17 cells by anti-CD3 injection can be a tool to modulate the CD4+ T cell response. This anti-CD3 treatment can trigger a regulatory phenotype in Th17 cells and transdifferentiation of Th17 cells into immunosuppressive IL-10-expressing Tr1 cells (Tr1exTh17 cells). Thus, targeting Th17 cell plasticity could be envisaged as a new therapeutic approach in patients with glomerulonephritis.


Assuntos
Doenças Autoimunes/imunologia , Plasticidade Celular/imunologia , Nefropatias/imunologia , Rim/patologia , Animais , Humanos
14.
Cell Tissue Res ; 385(2): 435-443, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34125286

RESUMO

Single-cell biology is transforming the ability of researchers to understand cellular signaling and identity across medical and biological disciplines. Especially for immune-mediated diseases, a single-cell look at immune cell subtypes, signaling, and activity might yield fundamental insights into the disease etiology, mechanisms, and potential therapeutic interventions. In this review, we highlight recent advances in the field of single-cell RNA profiling and their application to understand renal function in health and disease. With a focus on the immune system, in particular on T cells, we propose some key directions of understanding renal inflammation using single-cell approaches. We detail the benefits and shortcomings of the various technological approaches outlined and give advice on potential pitfalls and challenges in experimental setup and computational analysis. Finally, we conclude with a brief outlook into a promising future for single-cell technologies to elucidate kidney function.


Assuntos
Sistema Imunitário/imunologia , Inflamação/patologia , Rim/patologia , Análise de Célula Única/métodos , Animais , Humanos
15.
Cell Tissue Res ; 385(2): 457-473, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34309728

RESUMO

Acute and chronic kidney diseases are major contributors to morbidity and mortality in the global population. Many nephropathies are considered to be immune-mediated with dysregulated immune responses playing an important role in the pathogenesis. At present, targeted approaches for many kidney diseases are still lacking, as the underlying mechanisms remain insufficiently understood. With the recent development of organoids-a three-dimensional, multicellular culture system, which recapitulates important aspects of human tissues-new opportunities to investigate interactions between renal cells and immune cells in the pathogenesis of kidney diseases arise. To date, kidney organoid systems, which reflect the structure and closer resemble critical aspects of the organ, have been established. Here, we highlight the recent advances in the development of kidney organoid models, including pluripotent stem cell-derived kidney organoids and primary epithelial cell-based tubuloids. The employment and further required advances of current organoid models are discussed to investigate the role of the immune system in renal tissue development, regeneration, and inflammation to identify targets for the development of novel therapeutic approaches of immune-mediated kidney diseases.


Assuntos
Nefropatias/imunologia , Organoides/metabolismo , Animais , Humanos
16.
Am J Physiol Renal Physiol ; 316(3): F572-F581, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30648909

RESUMO

Anti-glomerular basement membrane (anti-GBM) disease is characterized by antibodies and T cells directed against the Goodpasture antigen, the noncollagenous domain of the α3-chain of type IV collagen [α3(IV)NC1] of the GBM. Consequences are the deposition of autoantibodies along the GBM and the development of crescentic glomerulonephritis (GN) with rapid loss of renal function. Forkhead box protein P3 (Foxp3)+ regulatory T (Treg) cells are crucial for the maintenance of peripheral tolerance to self-antigens and the prevention of immunopathology. Here, we use the mouse model of experimental autoimmune GN to characterize the role of Treg cells in anti-GBM disease. Immunization of DBA/1 mice with α3(IV)NC1 induced the formation of α3(IV)NC1-specific T cells and antibodies and, after 8-10 wk, the development of crescentic GN. Immunization resulted in increased frequencies of peripheral Treg cells and renal accumulation of these cells in the stage of acute GN. Depletion of Treg cells during immunization led to enhanced generation of α3(IV)NC1-specific antibodies and T cells and to aggravated GN. In contrast, depletion or expansion of the Treg cell population in mice with established autoimmunity had only minor consequences for renal inflammation and did not alter the severity of GN. In conclusion, our results indicate that in anti-GBM disease, Treg cells restrict the induction of autoimmunity against α3(IV)NC1. However, Treg cells are inefficient in preventing crescentic GN after autoimmunity has been established.


Assuntos
Doença Antimembrana Basal Glomerular/imunologia , Doenças Autoimunes/imunologia , Glomerulonefrite/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade , Modelos Animais de Doenças , Masculino , Camundongos
17.
J Immunol ; 198(3): 1130-1141, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003377

RESUMO

IL-10 is essential to maintain intestinal homeostasis. CD4+ T regulatory type 1 (TR1) cells produce large amounts of this cytokine and are therefore currently being examined in clinical trials as T cell therapy in patients with inflammatory bowel disease. However, factors and molecular signals sustaining TR1 cell regulatory activity still need to be identified to optimize the efficiency and ensure the safety of these trials. We investigated the role of IL-10 signaling in mature TR1 cells in vivo. Double IL-10eGFP Foxp3mRFP reporter mice and transgenic mice with impairment in IL-10 receptor signaling were used to test the activity of TR1 cells in a murine inflammatory bowel disease model, a model that resembles the trials performed in humans. The molecular signaling was elucidated in vitro. Finally, we used human TR1 cells, currently employed for cell therapy, to confirm our results. We found that murine TR1 cells expressed functional IL-10Rα. TR1 cells with impaired IL-10 receptor signaling lost their regulatory activity in vivo. TR1 cells required IL-10 receptor signaling to activate p38 MAPK, thereby sustaining IL-10 production, which ultimately mediated their suppressive activity. Finally, we confirmed these data using human TR1 cells. In conclusion, TR1 cell regulatory activity is dependent on IL-10 receptor signaling. These data suggest that to optimize TR1 cell-based therapy, IL-10 receptor expression has to be taken into consideration.


Assuntos
Receptores de Interleucina-10/fisiologia , Transdução de Sinais/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Interleucina-10/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fator de Transcrição STAT3/metabolismo , Células Th17/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Am Soc Nephrol ; 29(4): 1210-1222, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483158

RESUMO

The IL-17 cytokine family and the cognate receptors thereof have a unique role in organ-specific autoimmunity. Most studies have focused on the founding member of the IL-17 family, IL-17A, as the central mediator of diseases. Indeed, although pathogenic functions have been ascribed to IL-17A and IL-17F in the context of immune-mediated glomerular diseases, the specific functions of the other IL-17 family members in immunity and inflammatory kidney diseases is largely unknown. Here, we report that compared with healthy controls, patients with acute Anti-neutrophil cytoplasmatic antibody (ANCA)-associated crescentic glomerulonephritis (GN) had significantly elevated serum levels of IL-17C (but not IL-17A, F, or E). In mouse models of crescentic GN (nephrotoxic nephritis) and pristane-induced lupus nephritis, deficiency in IL-17C significantly ameliorated the course of GN in terms of renal tissue injury and kidney function. Deficiency of the unique IL-17C receptor IL-17 receptor E (IL-17RE) provided similar protection against crescentic GN. These protective effects associated with a reduced TH17 response. Bone marrow transplantation experiments revealed that IL-17C is produced by tissue-resident cells, but not by lymphocytes. Finally, IL-17RE was highly expressed by CD4+ TH17 cells, and loss of this expression prevented the TH17 responses and subsequent tissue injury in crescentic GN. Our findings indicate that IL-17C promotes TH17 cell responses and immune-mediated kidney disease via IL-17RE expressed on CD4+ TH17 cells. Targeting the IL-17C/IL-17RE pathway may present an intriguing therapeutic strategy for TH17-induced autoimmune disorders.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Glomerulonefrite/imunologia , Interleucina-17/sangue , Interleucina-17/fisiologia , Receptores de Interleucina-17/fisiologia , Células Th17/imunologia , Animais , Anticorpos Anticitoplasma de Neutrófilos/imunologia , Doenças Autoimunes/sangue , Doenças Autoimunes/patologia , Doenças Autoimunes/prevenção & controle , Glomerulonefrite/sangue , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Humanos , Interleucina-17/biossíntese , Interleucina-17/deficiência , Interleucina-17/genética , Rim/imunologia , Rim/patologia , Nefrite Lúpica/induzido quimicamente , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , RNA Mensageiro/biossíntese , Quimera por Radiação , Receptores de Interleucina-17/biossíntese , Receptores de Interleucina-17/deficiência , Receptores de Interleucina-17/genética , Terpenos/toxicidade , Regulação para Cima
19.
J Autoimmun ; 87: 61-68, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29275837

RESUMO

Anti-neutrophil cytoplasmatic antibody (ANCA)-associated glomerulonephritis, anti-glomerular basement membrane (GBM) glomerulonephritis and lupus nephritis are the most common causes of rapid progressive glomerulonephritis (RPGN) in the Western world. These aggressive forms of autoimmune kidney diseases significantly contribute to end-stage renal disease and are associated with high morbidity and mortality. Moreover, patients show significant heterogeneity with respect to clinical outcome and response to therapy. T cell infiltration is a morphological hallmark of RPGN and it is a critical driver of kidney injury. Different CD4+ T cell subsets that are endowed with distinct regulatory and effector functions are involved in this detrimental inflammatory process. In particular, the identification and functional characterization of IL-17-expressing CD4+ Th17 cells have substantially advanced our understanding of organ-specific autoimmunity. In experimental models of crescentic and proliferative GN, including ANCA-associated GN, anti-GBM-GN and lupus nephritis, the Th17/IL-17 axis significantly contributes to renal tissue damage. In patients with ANCA-associated GN or lupus nephritis, IL-17 serum levels correlated with disease activity. Moreover, Th17 cells are present in the kidneys of these patients and represents a topic of intense ongoing clinical and basic research. Importantly, recent studies have challenged the view of CD4+ T cells subsets as terminally differentiated homogenous cells, showing that T cells, in particular Th17 cells, are much more flexible and heterogeneous than previously thought. However, analysis of Th17 cell fate in mouse models of autoimmune kidney disease revealed a high degree of stability within these cells, an observation that is in contrast to Th17 cells in other models of autoimmune diseases including experimental autoimmune encephalomyelitis. Interestingly, anti-CD3 treatment interferes with stable Th17 cells and induces a potential regulatory phenotype in Th17 cells, highlighting the therapeutic potential of targeting pathogenic Th17 cells in autoimmunity. In this review, we discuss the current knowledge of Th17 cell plasticity and heterogeneity in autoimmune kidney diseases with a special focus on the underlying mechanisms of this process and debate if Th17 cell plasticity is beneficial or harmful to renal inflammation.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos/metabolismo , Glomerulonefrite/imunologia , Interleucina-17/metabolismo , Nefrite Lúpica/imunologia , Células Th17/imunologia , Animais , Plasticidade Celular , Transdiferenciação Celular , Progressão da Doença , Humanos , Imunomodulação , Camundongos
20.
J Immunol ; 197(2): 449-57, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27271566

RESUMO

The ability of CD4(+) T cells to differentiate into pathogenic Th1 and Th17 or protective T regulatory cells plays a pivotal role in the pathogenesis of autoimmune diseases. Recent data suggest that CD4(+) T cell subsets display a considerable plasticity. This plasticity seems to be a critical factor for their pathogenicity, but also for the potential transition of pathogenic effector T cells toward a more tolerogenic phenotype. The aim of the current study was to analyze the plasticity of Th17 cells in a mouse model of acute crescentic glomerulonephritis and in a mouse chronic model of lupus nephritis. By transferring in vitro generated, highly purified Th17 cells and by using IL-17A fate reporter mice, we demonstrate that Th17 cells fail to acquire substantial expression of the Th1 and Th2 signature cytokines IFN-γ and IL-13, respectively, or the T regulatory transcription factor Foxp3 throughout the course of renal inflammation. In an attempt to therapeutically break the stability of the Th17 phenotype in acute glomerulonephritis, we subjected nephritic mice to CD3-specific Ab treatment. Indeed, this treatment induced an immunoregulatory phenotype in Th17 cells, which was marked by high expression of IL-10 and attenuated renal tissue damage in acute glomerulonephritis. In summary, we show that Th17 cells display a minimum of plasticity in acute and chronic experimental glomerulonephritis and introduce anti-CD3 treatment as a tool to induce a regulatory phenotype in Th17 cells in the kidney that may be therapeutically exploited.


Assuntos
Doenças Autoimunes/imunologia , Diferenciação Celular/imunologia , Glomerulonefrite/imunologia , Nefrite Lúpica/imunologia , Células Th17/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA