Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 89(8): 833-847, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37187191

RESUMO

3ß-hydroxy-Δ5-steroid dehydrogenases (3ßHSDs) are supposed to be involved in 5ß-cardenolide biosynthesis. Here, a novel 3ßHSD (Dl3ßHSD2) was isolated from Digitalis lanata shoot cultures and expressed in E. coli. Recombinant Dl3ßHSD1 and Dl3ßHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only rDl3ßHSD2 converted small ketones and secondary alcohols efficiently. To explain these differences in substrate specificity, we established homology models using borneol dehydrogenase of Salvia rosmarinus (6zyz) as the template. Hydrophobicity and amino acid residues in the binding pocket may explain the difference in enzyme activities and substrate preferences. Compared to Dl3ßHSD1, Dl3ßHSD2 is weakly expressed in D. lanata shoots. High constitutive expression of Dl3ßHSDs was realised by Agrobacterium-mediated transfer of Dl3ßHSD genes fused to the CaMV-35S promotor into the genome of D. lanata wild type shoot cultures. Transformed shoots (35S:Dl3ßHSD1 and 35S:Dl3ßHSD2) accumulated less cardenolides than controls. The levels of reduced glutathione (GSH), which is known to inhibit cardenolide formation, were higher in the 35S:Dl3ßHSD1 lines than in the controls. In the 35S:Dl3ßHSD1 lines cardenolide levels were restored after adding of the substrate pregnane-3,20-dione in combination with buthionine-sulfoximine (BSO), an inhibitor of GSH formation. RNAi-mediated knockdown of the Dl3ßHSD1 yielded several shoot culture lines with strongly reduced cardenolide levels. In these lines, cardenolide biosynthesis was fully restored after addition of the downstream precursor pregnan-3ß-ol-20-one, whereas upstream precursors such as progesterone had no effect, indicating that no shunt pathway could overcome the Dl3ßHSD1 knockdown. These results can be taken as the first direct proof that Dl3ßHSD1 is indeed involved in 5ß-cardenolide biosynthesis.


Assuntos
Digitalis , Digitalis/genética , Digitalis/metabolismo , Cardenolídeos/metabolismo , Escherichia coli/genética , Interferência de RNA , Oxirredutases/genética , Oxirredutases/química , Oxirredutases/metabolismo
2.
Chem Biodivers ; 19(10): e202200411, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085355

RESUMO

There is growing interest in exploring Digitalis cardenolides as potential antiviral agents. Hence, we herein investigated the influence of structural features and lipophilicity on the antiherpes activity of 65 natural and semisynthetic cardenolides assayed in vitro against HSV-1. The presence of an α,ß-unsaturated lactone ring at C-17, a ß-hydroxy group at C-14 and C-3ß-OR substituents were considered essential requirements for this biological activity. Glycosides were more active than their genins, especially monoglycosides containing a rhamnose residue. The activity enhanced in derivatives bearing an aldehyde group at C-19 instead of a methyl group, whereas inserting a C-5ß-OH improved the antiherpes effect significantly. The cardenolides lipophilicity was accessed by measuring experimentally their log P values (n-octanol-water partition coefficient) and disclosed a range of lipophilicity (log P 0.75±0.25) associated with the optimal antiherpes activity. In silico studies were carried out and resulted in the establishment of two predictive models potentially useful to identify and/or optimize novel antiherpes cardenolides. The effectiveness of the models was confirmed by retrospective analysis of the studied compounds. This is the first SAR study addressing the antiherpes activity of cardenolides. The developed computational models were able to predict the active cardenolides and their log P values.


Assuntos
Digitalis , Digitalis/química , Cardenolídeos/farmacologia , 1-Octanol , Ramnose , Estudos Retrospectivos , Extratos Vegetais/química , Antivirais/farmacologia , Glicosídeos , Lactonas , Aldeídos , Água
3.
Mol Cell Biochem ; 476(4): 1825-1848, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33459980

RESUMO

Cardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na+,K+ ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells. We also tested GEV effects on Na+,K+ -ATPase activity and membrane currents, alone or in combination with selected chemotherapy drugs. GEV reduced viability, migration, and invasion of H460 cells spheroids. It also induced cell cycle arrest and death and reduced the clonogenic survival and cumulative population doubling. GEV inhibited Na+,K+-ATPase activity on A549 and H460 cells and purified pig kidney cells membrane. However, it showed no activity on the human red blood cell plasma membrane. Additionally, GEV triggered a Cl-mediated conductance on H460 cells without affecting the transient voltage-gated sodium current. The administration of GEV in combination with the chemotherapeutic drugs paclitaxel (PAC), cisplatin (CIS), irinotecan (IRI), and etoposide (ETO) showed synergistic antiproliferative effects, especially when combined with GEV + CIS and GEV + PAC. Taken together, our results demonstrate that GEV is a potential drug for cancer therapy because it reduces lung cancer H460 cell viability, migration, and invasion. Our results also reveal a link between the Na+,K+-ATPase and Cl- ion channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Cardenolídeos/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citotoxinas/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
4.
Plant Cell Rep ; 40(9): 1631-1646, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146141

RESUMO

KEY MESSAGE: Studying RNAi-mediated DlP5ßR1 and DlP5ßR2 knockdown shoot culture lines of Digitalis lanata, we here provide direct evidence for the participation of PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes) in 5ß-cardenolide formation. Progesterone 5ß-reductases (P5ßR) are assumed to catalyze the reduction of progesterone to 5ß-pregnane-3,20-dione, which is a crucial step in the biosynthesis of the 5ß-cardenolides. P5ßRs are encoded by VEP1-like genes occurring ubiquitously in embryophytes. P5ßRs are substrate-promiscuous enone-1,4-reductases recently termed PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes). Two PRISE genes, termed DlP5ßR1 (AY585867.1) and DlP5ßR2 (HM210089.1) were isolated from Digitalis lanata. To give experimental evidence for the participation of PRISEs in 5ß-cardenolide formation, we here established several RNAi-mediated DlP5ßR1 and DlP5ßR2 knockdown shoot culture lines of D. lanata. Cardenolide contents were lower in D. lanata P5ßR-RNAi lines than in wild-type shoots. We considered that the gene knockdowns may have had pleiotropic effects such as an increase in glutathione (GSH) which is known to inhibit cardenolide formation. GSH levels and expression of glutathione reductase (GR) were measured. Both were higher in the Dl P5ßR-RNAi lines than in the wild-type shoots. Cardenolide biosynthesis was restored by buthionine sulfoximine (BSO) treatment in Dl P5ßR2-RNAi lines but not in Dl P5ßR1-RNAi lines. Since progesterone is a precursor of cardenolides but can also act as a reactive electrophile species (RES), we here discriminated between these by comparing the effects of progesterone and methyl vinyl ketone, a small RES but not a precursor of cardenolides. To the best of our knowledge, we here demonstrated for the first time that P5ßR1 is involved in cardenolide formation. We also provide further evidence that PRISEs are also important for plants dealing with stress by detoxifying reactive electrophile species (RES).


Assuntos
Cardenolídeos/metabolismo , Digitalis/genética , Digitalis/metabolismo , Oxirredutases/genética , Proteínas de Plantas/genética , Butanonas/farmacologia , Butionina Sulfoximina/farmacologia , Digitalis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Glutationa/farmacologia , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Progesterona/farmacologia , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Anticancer Drugs ; 31(5): 452-462, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32079825

RESUMO

Cardiac glycosides (CGs) are natural compounds traditionally used for the treatment of heart disorders, and recently new therapeutic possibilities were proposed. Their antitumor reports and clinical trials have notably enhanced, including those targeted for lung cancer, the most lethal type that lacks of new treatment agents, instigating the research of these molecules. The CGs studied here, named C10 {3ß-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin} and C18 (3ß-(aminoacetyl)amino-3-deoxydigitoxigenin), are semisynthetic derivatives prepared from digitoxigenin scaffold. Both compounds demonstrated high cytotoxicity for different cancer cell lines, especially H460 lung cancer cells, and their cytotoxic effects were deeply investigated using different methodological approaches. C10 induced cell death at lower concentrations and during shorter periods of treatment than C18, and increased the number of small and irregular nuclei, which are characteristics of apoptosis. This type of cell death was confirmed by caspase-3/7 assay. Both compounds reduced H460 cells proliferative potential by long-term action, and C10 showed the strongest potential. Moreover, these compounds induced a significant decrease of the area and viability of H460 spheroids providing preclinical favorable profiles to develop new chemotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Digitoxigenina/análogos & derivados , Digitoxigenina/química , Digitoxigenina/farmacologia , Neoplasias Pulmonares/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Células Tumorais Cultivadas
6.
Arch Virol ; 165(6): 1385-1396, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32346764

RESUMO

Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3ß-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3ß-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (ß) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.


Assuntos
Antivirais/farmacologia , Cardenolídeos/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Aciclovir/farmacologia , Animais , Antivirais/síntese química , Cardenolídeos/síntese química , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Infecções por Herpesviridae/tratamento farmacológico , Humanos , Células Vero
7.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096707

RESUMO

Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3ß-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3ß-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.


Assuntos
Antivirais/farmacologia , Cardenolídeos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Antivirais/química , Cardenolídeos/química , Humanos , Conformação Molecular , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/efeitos dos fármacos
8.
J Exp Bot ; 70(5): 1435-1445, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30715457

RESUMO

The amazing variability of plant metabolism and its rapid divergence during evolution pose fundamental questions as to the driving forces, mechanisms, and players in metabolic differentiation. This review examines concepts that help us understand adaptive pathway evolution, with a particular emphasis on plant specialized metabolism, previously often termed secondary metabolism. Following a general introduction to pathway and metabolite evolution, the focus is directed to enzyme promiscuity and its classification. Promiscuous enzymes (or substrates), 'silent' elements of the metabolome, and the 'underground metabolism' may be used and combined to evolve 'new' metabolic pathways. It appears that new pathways rarely appear from scratch, but instead emerge from 'floppy' enzymes and elements of a 'messy' metabolism, and in this way a range of metabolites is generated, some of which may provide benefits to the plant.


Assuntos
Redes e Vias Metabólicas , Metaboloma , Plantas/enzimologia
9.
Mol Cell Biochem ; 428(1-2): 23-39, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28176244

RESUMO

Cardenolides are cardiac glycosides, mostly obtained from natural sources. They are well known for their inhibitory action on the Na,K-ATPase, an effect that regulates cardiovascular alterations such as congestive heart failure and atrial arrhythmias. In recent years, they have also sparked new interest in their anticancer potential. In the present study, the cytotoxic effects of the natural cardenolide convallatoxin (CON) were evaluated on non-small cell lung cancer (A549 cells). It was found that CON induced cytostatic and cytotoxic effects in A549 cells, showing essentially apoptotic cell death, as detected by annexin V-propidium iodide double-staining, as well as changes in cell form. In addition, it prompted cell cycle arrest in G2/M and reduced cyclin B1 expression. This compound also increased the number of cells in subG1 in a concentration- and time-dependent manner. At a long term, the reduction of cumulative population doubling was shown along with an increase of ß-galactosidase positive cells and larger nucleus, indicative of senescence. Subsequently, CON inhibited the Na,K-ATPase in A549 cells at nM concentrations. Interestingly, at the same concentrations, CON was unable to directly inhibit the Na,K-ATPase, either in pig kidney or in red blood cells. Additionally, results of docking calculations showed that CON binds with high efficiency to the Na,K-ATPase. Taken together, our data highlight the potent anticancer effects of CON in A549 cells, and their possible link with non-classical inhibition of Na,K-ATPase.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Estrofantinas/farmacologia , Células A549 , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , ATPase Trocadora de Sódio-Potássio/química , Suínos
10.
Planta Med ; 83(12-13): 962-976, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28561136

RESUMO

This review provides a renewed look at the genus Digitalis. Emphasis will be put on those issues that attracted the most attention or even went through paradigmatic changes since the turn of the millennium. PubMed and Google Scholar were used ("Digitalis" and "Foxglove" were the key words) to identify research from 2000 till 2017 containing data relevant enough to be presented here. Intriguing new results emerged from studies related to the phylogeny and taxonomy of the genus as well as to the biosynthesis and potential medicinal uses of the key active compounds, the cardiac glycosides. Several Eastern and Western Foxgloves were studied with respect to their propagation in vitro. In this context, molecular biology tools were applied and phytochemical analyses were conducted. Structure elucidation and analytical methods, which have experienced less exciting progress, will not be considered here in great detail.


Assuntos
Glicosídeos Cardíacos/análise , Digitalis/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Glicosídeos Cardíacos/química , Digitalis/classificação , Digitalis/genética , Digitalis/metabolismo , Compostos Fitoquímicos/química , Plantas Medicinais
11.
Planta Med ; 83(12-13): 1035-1043, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28486743

RESUMO

Recent studies demonstrate that cardiac glycosides, known to inhibit Na+/K+-ATPase in humans, have increased susceptibility to cancer cells that can be used in tumor therapy. One of the most promising candidates identified so far is glucoevatromonoside, which can be isolated from the endangered species Digitalis mariana ssp. heywoodii. Due to its complex structure, glucoevatromonoside cannot be obtained economically by total chemical synthesis. Here we describe two methods for glucoevatromonoside production, both using evatromonoside obtained by chemical degradation of digitoxin as the precursor. 1) Catalyst-controlled, regioselective glycosylation of evatromonoside to glucoevatromonoside using 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide as the sugar donor and 2-aminoethyldiphenylborinate as the catalyst resulted in an overall 30 % yield. 2) Biotransformation of evatromonoside using Digitalis lanata plant cell suspension cultures was less efficient and resulted only in overall 18 % pure product. Structural proof of products has been provided by extensive NMR data. Glucoevatromonoside and its non-natural 1-3 linked isomer neo-glucoevatromonoside obtained by semisynthesis were evaluated against renal cell carcinoma and prostate cancer cell lines.


Assuntos
Antineoplásicos/metabolismo , Cardenolídeos/metabolismo , Glicosídeos Cardíacos/metabolismo , Digitalis/metabolismo , Digitoxina/química , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Biotransformação , Cardenolídeos/síntese química , Cardenolídeos/isolamento & purificação , Cardenolídeos/farmacologia , Glicosídeos Cardíacos/síntese química , Glicosídeos Cardíacos/isolamento & purificação , Glicosídeos Cardíacos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Digitalis/química , Digitoxina/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Glicosilação , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
Plant Foods Hum Nutr ; 71(4): 355-360, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27392961

RESUMO

Potentiation of γ-amino butyric acid (GABA)-induced GABAA receptor (GABAAR) activation is a common pathway to achieve sedative, sleep-enhancing, anxiolytic, and antidepressant effects. Presently, a three-component test system was established for the identification of novel GABAAR modulating food plants. In the first step, potentiation of GABA-induced response of the GABAAR was analysed by two-electrode voltage clamp (TEVC) for activity on human α1ß2-GABAAR expressed in Xenopus laevis oocytes. Positively tested food plants were then subjected to quantification of GABA content by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) to exclude test foods, which evoke a TEVC-response by endogenous GABA. In the third step, specificity of GABAA-modulating activity was assessed by TEVC analysis of Xenopus laevis oocytes expressing the homologous glycine receptor (GlyR). The three-component test was then applied to screen 10 aqueous extracts of food plants for their GABAAR activity. Thus, hop cones (Humulus lupulus) and Sideritis sipylea were identified as the most potent specific GABAAR modulators eliciting significant potentiation of the current by 182 ± 27 and 172 ± 19 %, respectively, at the lowest concentration of 0.5 µg/mL. The extracts can now be further evaluated by in vivo studies and by structural evaluation of the active components.


Assuntos
Moduladores GABAérgicos/farmacologia , Plantas Comestíveis/química , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/análise , Animais , Clonagem Molecular , Moduladores GABAérgicos/química , Regulação da Expressão Gênica , Humanos , Humulus/química , Oócitos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Receptores de GABA-A/genética , Sideritis/química , Xenopus laevis
13.
Metabolites ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35050133

RESUMO

Small or specialized natural products (SNAPs) produced by plants vary greatly in structure and function, leading to selective advantages during evolution. With a limited number of genes available, a high promiscuity of the enzymes involved allows the generation of a broad range of SNAPs in complex metabolic networks. Comparative metabolic studies may help to understand why-or why not-certain SNAPs are produced in plants. Here, we used the wound-induced, vein patterning regulating VEP1 (AtStR1, At4g24220) and its paralogue gene on locus At5g58750 (AtStR2) from Arabidopsis to study this issue. The enzymes encoded by VEP1-like genes were clustered under the term PRISEs (progesterone 5ß-reductase/iridoid synthase-like enzymes) as it was previously demonstrated that they are involved in cardenolide and/or iridoid biosynthesis in other plants. In order to further understand the general role of PRISEs and to detect additional more "accidental" roles we herein characterized A. thaliana steroid reductase 1 (AtStR1) and compared it to A. thaliana steroid reductase 2 (AtStR2). We used A. thaliana Col-0 wildtype plants as well as VEP1 knockout mutants and VEP1 knockout mutants overexpressing either AtStR1 or AtStR2 to investigate the effects on vein patterning and on the stress response after treatment with methyl vinyl ketone (MVK). Our results added evidence to the assumption that AtStR1 and AtStR2, as well as PRISEs in general, play specific roles in stress and defense situations and may be responsible for sudden metabolic shifts.

14.
Phytochemistry ; 187: 112710, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33930670

RESUMO

Three putative 21-hydroxypregnane 21-O-malonyltransferases (21MaT) from Digitalis lanata were partially purified. Two of them were supposed to be BAHD-type enzymes. We were unable to purify them in quantities necessary for reliable sequencing. We identified two genes in A. thaliana coding for substrate-promiscuous BAHD-type phenolic glucoside malonyltransferases (AtPMaT1, AtPMaT2) and docked various 21-hydroxypregnanes into the substrate-binding site of a homology model built on the BAHD template 2XR7 (NtMaT1 from N. tabacum). Recombinant forms of Atpmat1 and Atpmat2 were expressed in E. coli and the recombinant enzymes characterized with regard to their substrate preferences. They were shown to malonylate various 21-hydroxypregnanes. The Atpmat1 sequence was used to identify candidate genes in Digitalis lanata (Dlmat1 to Dlmat4). Dlmat1 and Dlmat2 were also expressed in E. coli and shown to possess 21-hydroxypregnane 21-O-malonyltransferase activity.


Assuntos
Arabidopsis , Digitalis , Arabidopsis/genética , Cardenolídeos , Escherichia coli/genética , Glucosídeos
15.
Planta Med ; 76(9): 923-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20514608

RESUMO

Plants of the genus Digitalis produce 5 beta-cardenolides that are used in the therapy of cardiac insufficiency in humans. 3 beta-Hydroxysteroid dehydrogenase (3 beta-HSD) and progesterone 5 beta-reductase (P5 betaR) are both supposed to be important enzymes in the biosynthesis of these natural products. Activity and gene expression were demonstrated for both enzymes in cardenolide-accumulating leaves of Digitalis lanata but also in cardenolide-free permanent cell suspension cultures initiated from D. lanata leaf tissue. Enzyme activities were determined and quantified by HPLC and GC-MS methods. Expression of the respective genes, namely AY585867.1 (P5betaR gene) and DQ466890.1 (3beta-HSD gene), was made evident by real-time polymerase chain reaction (qPCR) analysis. We demonstrate for the first time that the P5betaR gene, encoding an enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in cardenolide-free tissues of cardenolide-containing plants.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Cardenolídeos/metabolismo , Digitalis/genética , Expressão Gênica , Genes de Plantas , Oxirredutases/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , Técnicas de Cultura de Células , Digitalis/enzimologia , Digitalis/metabolismo , Oxirredutases/genética , Folhas de Planta , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Planta Med ; 75(13): 1459-61, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19452439

RESUMO

Flavonol 3- O-beta-heterodisaccharidase (FHG 1) was isolated from the dried herb of Fagopyrum esculentum, immobilized on porous glass, and used for the release of rutinose from rutin. The stability of the enzyme in its free or immobilized form was observed continuously at two different temperatures (4 degrees C and 25 degrees C). T(1/2) values were determined to be about 48 h for the free enzyme and about 300 h for the immobilized enzyme. The rutinose released was isolated by fractionated ethanol precipitation.


Assuntos
Dissacaridases/metabolismo , Dissacarídeos/biossíntese , Fagopyrum/química , Extratos Vegetais/metabolismo , Rutina/metabolismo , Dissacaridases/isolamento & purificação , Dissacarídeos/isolamento & purificação , Vidro , Porosidade
17.
Microbiologyopen ; 8(12): e925, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436030

RESUMO

A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5 -3ß-hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5 -isomerase gene from Comamonas testosteronii, (c) a mutated steroid-5ß-reductase gene from Arabidopsis thaliana, and (d) a steroid 21-hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed "CARD II yeast", was capable of producing 5ß-pregnane-3ß,21-diol-20-one, a central intermediate in 5ß-cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.


Assuntos
Vias Biossintéticas , Cardenolídeos/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Cardenolídeos/análise , Cromatografia Gasosa-Espectrometria de Massas , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ordem dos Genes , Plasmídeos/genética , Saccharomyces cerevisiae/genética
18.
Eur J Med Chem ; 167: 546-561, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30798081

RESUMO

In recent years, new therapeutic possibilities were proposed for cardiac glycosides traditionally used to treat heart diseases, such as anticancer and antiviral activities. In this sense, this work aimed to synthesize the readily accessible 3ß-azido-3-deoxydigitoxigenin (5) from digitoxigenin (1). Two new series of compounds were obtained from derivative (5): (i) O-glycosyl trizols through click chemistry with propargyl glycosides; and (ii) compounds substituted in the alpha carbonyl position with different residues linked via an amino-group. All obtained derivatives have their chemical structures confirmed, and their anti-herpes (against HSV-types 1 and 2 replication) and cytotoxic (against PC3, A549, HCT-8 and LNCaP cell lines) activities evaluated. Compounds 10 and 11 exhibited the most promising results against HSV-1 (KOS and 29-R strains) and HSV-2 (333 strain) replication with SI values > 1000. Both compounds were also the most cytotoxic for the human cancer cell lines tested with IC50 values similar to those of paclitaxel. They also presented reduced toxicity toward non-cancerous cell lines (MRC-5 and HGF cells). Promising compounds were tested in regard to their ability to inhibit Na+/K+-ATPase. The inhibition rate correlates suitably with the bioactivity demonstrated by those both compounds against the different human cancer cells tested as well as against HSV replication. Moreover, the results showed that specific chemical features of compound 10 and 11 influenced the bioactivities tested. In summary, it was possible to obtain novel digitoxigenin-derivatives with remarkable cytotoxic and anti-herpes activities as well as low toxicity and high selectivity. In this way, they could be considered potential molecules for the development of new drugs.


Assuntos
Antineoplásicos/química , Antivirais/química , Digitoxigenina/farmacologia , Infecções por Herpesviridae/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Química Click , Digitoxigenina/análogos & derivados , Digitoxigenina/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Humanos
19.
Phytochemistry ; 69(3): 619-26, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17945319

RESUMO

With respect to the cardenolide pathway and the characterization of enzymes involved in the formation of cardenolides, a malonyltransferase, termed malonyl-coenzyme A: 21-hydroxypregnane 21-O-malonyltransferase (Dp21MaT) has been purified. The enzyme catalyses the transfer of the malonyl moiety from malonyl-coenzyme A to 21-hydroxypregnane substrates. Malonyltransferase activity was checked in several potential starting materials including fresh leaves and cell suspension cultures from different plants. Fresh Digitalis purpurea L. leaves turned out to be the best enzyme source. The purification protocol included ammonium sulphate precipitation, hydrophobic interaction chromatography on Phenylsepharose 6 FF, ion exchange chromatography on Source 30 Q, affinity chromatography on Cibacron Blue 3GA and gel filtration on Superdex 75. Gel filtration and native SDS-PAGE analysis showed that Dp21MaT exists as a monomer with a molecular mass of 27kDa. Its pI, as determined by isoelectric focusing, was 4.66. The enzyme showed maximal activity at pH 6.5 when incubated at 42 degrees C. The energy of activation was 29.28kJmol(-1), whereas that of inactivation was 48.57kJmol(-1). Dp21MaT was purified 252-fold with a yield of about 1%. Hanes plots of kinetic data indicated K(m) values of 99microM (V(max) 47.57microkatkg(-1)) and 28.44microM (V(max) 39.4microkatkg(-1) protein) for 3beta-benzoyloxy-5beta-pregnane-14beta,21-dihydroxy-20-one and malonyl-CoA, respectively.


Assuntos
Aciltransferases/química , Aciltransferases/isolamento & purificação , Digitalis/enzimologia , Folhas de Planta/enzimologia , Aciltransferases/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Metais/farmacologia , Conformação Molecular , Peso Molecular , Sensibilidade e Especificidade , Estereoisomerismo , Especificidade por Substrato , Temperatura
20.
Steroids ; 73(4): 458-65, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18249427

RESUMO

A simple and versatile method for the chemical synthesis of 21-hydroxypregnane 21-O-malonyl hemiesters which may be important intermediates of cardenolide biosynthesis is described. Starting from commercial beta-methyldigitoxin, acid hydrolysis followed by 3beta-O-acetylation and ozonolysis with reductive cleavage of the ozonides afforded 3beta-acetoxy-5beta-pregnane-14beta,21-diol-20-one which was finally converted into the target compound by treatment with malonyl chloride. The malonylation protocol was optimized using deoxycorticosterone (DOC) as the pregnane educt.


Assuntos
Cardenolídeos/química , Cardenolídeos/síntese química , Pregnanos/química , Pregnenolona/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Digitoxigenina/química , Ésteres , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA