Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Environ Sci Technol ; 58(24): 10601-10610, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833530

RESUMO

The mobility and bioavailability of phosphate in paddy soils are closely coupled to redox-driven Fe-mineral dynamics. However, the role of phosphate during Fe-mineral dissolution and transformations in soils remains unclear. Here, we investigated the transformations of ferrihydrite and lepidocrocite and the effects of phosphate pre-adsorbed to ferrihydrite during a 16-week field incubation in a flooded sandy rice paddy soil in Thailand. For the deployment of the synthetic Fe-minerals in the soil, the minerals were contained in mesh bags either in pure form or after mixing with soil material. In the latter case, the Fe-minerals were labeled with 57Fe to allow the tracing of minerals in the soil matrix with 57Fe Mössbauer spectroscopy. Porewater geochemical conditions were monitored, and changes in the Fe-mineral composition were analyzed using 57Fe Mössbauer spectroscopy and/or X-ray diffraction analysis. Reductive dissolution of ferrihydrite and lepidocrocite played a minor role in the pure mineral mesh bags, while in the 57Fe-mineral-soil mixes more than half of the minerals was dissolved. The pure ferrihydrite was transformed largely to goethite (82-85%), while ferrihydrite mixed with soil only resulted in 32% of all remaining 57Fe present as goethite after 16 weeks. In contrast, lepidocrocite was only transformed to 12% goethite when not mixed with soil, but 31% of all remaining 57Fe was found in goethite when it was mixed with soil. Adsorbed phosphate strongly hindered ferrihydrite transformation to other minerals, regardless of whether it was mixed with soil. Our results clearly demonstrate the influence of the complex soil matrix on Fe-mineral transformations in soils under field conditions and how phosphate can impact Fe oxyhydroxide dynamics under Fe reducing soil conditions.


Assuntos
Compostos Férricos , Oryza , Fosfatos , Solo , Oryza/química , Fosfatos/química , Solo/química , Adsorção , Compostos Férricos/química , Minerais/química , Espectroscopia de Mossbauer , Ferro/química , Oxirredução
2.
Environ Sci Technol ; 57(27): 10008-10018, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37364169

RESUMO

Iron minerals in soils and sediments play important roles in many biogeochemical processes and therefore influence the cycling of major and trace elements and the fate of pollutants in the environment. However, the kinetics and pathways of Fe mineral recrystallization and transformation processes under environmentally relevant conditions are still elusive. Here, we present a novel approach enabling us to follow the transformations of Fe minerals added to soils or sediments in close spatial association with complex solid matrices including other minerals, organic matter, and microorganisms. Minerals enriched with the stable isotope 57Fe are mixed with soil or sediment, and changes in Fe speciation are subsequently studied by 57Fe Mössbauer spectroscopy, which exclusively detects 57Fe. In this study, 57Fe-labeled ferrihydrite was synthesized, mixed with four soils differing in chemical and physical properties, and incubated for 12+ weeks under anoxic conditions. Our results reveal that the formation of crystalline Fe(III)(oxyhydr)oxides such as lepidocrocite and goethite was strongly suppressed, and instead formation of a green rust-like phase was observed in all soils. These results contrast those from Fe(II)-catalyzed ferrihydrite transformation experiments, where formation of lepidocrocite, goethite, and/or magnetite often occurs. The presented approach allows control over the composition and crystallinity of the initial Fe mineral, and it can be easily adapted to other experimental setups or Fe minerals. It thus offers great potential for future investigations of Fe mineral transformations in situ under environmentally relevant conditions, in both the laboratory and the field.


Assuntos
Compostos Férricos , Ferro , Compostos Férricos/química , Solo , Espectroscopia de Mossbauer , Oxirredução , Minerais/química
3.
Chimia (Aarau) ; 77(11): 758-763, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047843

RESUMO

Chemical elements such as copper and molybdenum are essential for animal and human health but may become toxic at elevated concentrations depending on the exposure and intake rate. Other elements such as mercury pose a threat to human health at already low concentrations. The soil acts as the main source of these elements for plant uptake and is thus driving accumulation along the food chain. However, in Switzerland, no nationwide information on elemental distributions in soils has existed up to now. The geochemical soil atlas of Switzerland will fill this gap by presenting the concentration ranges and the spatial distribution of 20 elements in the topsoil. In this summary, we present the methodological approaches and some main findings of the atlas with a focus on toxic elements as well as elements that can be or are toxic at higher concentrations.


Assuntos
Cobre , Cadeia Alimentar , Animais , Humanos , Suíça , Transporte Biológico , Solo
4.
Environ Sci Technol ; 56(9): 5929-5938, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435661

RESUMO

Interactions between aqueous ferrous iron (Fe(II)) and secondary Fe oxyhydroxides catalyze mineral recrystallization and/or transformation processes in anoxic soils and sediments, where oxyanions, such as silicate, are abundant. However, the effect and the fate of silicate during Fe mineral recrystallization and transformation are not entirely understood and especially remain unclear for lepidocrocite. In this study, we reacted (Si-)ferrihydrite (Si/Fe = 0, 0.05, and 0.18) and (Si-)lepidocrocite (Si/Fe = 0 and 0.08) with isotopically labeled 57Fe(II) (Fe(II)/Fe(III) = 0.02 and 0.2) at pH 7 for up to 4 weeks. We followed Fe mineral transformations with X-ray diffraction and tracked Fe atom exchange by measuring aqueous and solid phase Fe isotope fractions. Our results show that the extent of ferrihydrite transformation in the presence of Fe(II) was strongly influenced by the solid phase Si/Fe ratio, while increasing the Fe(II)/Fe(III) ratio (from 0.02 to 0.2) had only a minor effect. The presence of silicate increased the thickness of newly formed lepidocrocite crystallites, and elemental distribution maps of Fe(II)-reacted Si-ferrihydrites revealed that much more Si was associated with the remaining ferrihydrite than with the newly formed lepidocrocite. Pure lepidocrocite underwent recrystallization in the low Fe(II) treatment and transformed to magnetite at the high Fe(II)/Fe(III) ratio. Adsorbed silicate inactivated the lepidocrocite surfaces, which strongly reduced Fe atom exchange and inhibited mineral transformation. Collectively, the results of this study demonstrate that Fe(II)-catalyzed Si-ferrihydrite transformation leads to the redistribution of silicate in the solid phase and the formation of thicker lepidocrocite platelets, while lepidocrocite transformation can be completely inhibited by adsorbed silicate. Therefore, silicate is an important factor to include when considering Fe mineral dynamics in soils under reducing conditions.


Assuntos
Compostos Férricos , Minerais , Catálise , Compostos Férricos/química , Óxido Ferroso-Férrico , Minerais/química , Oxirredução , Silicatos , Solo , Água
5.
Environ Sci Technol ; 56(17): 12723-12733, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35998342

RESUMO

In redox-affected soil environments, electron transfer between aqueous Fe(II) and solid-phase Fe(III) catalyzes mineral transformation and recrystallization processes. While these processes have been studied extensively as independent systems, the coexistence of iron minerals is common in nature. Yet it remains unclear how coexisting goethite influences ferrihydrite transformation. Here, we reacted ferrihydrite and goethite mixtures with Fe(II) for 24 h. Our results demonstrate that with more goethite initially present in the mixture more ferrihydrite turned into goethite. We further used stable Fe isotopes to label different Fe pools and probed ferrihydrite transformation in the presence of goethite using 57Fe Mössbauer spectroscopy and changes in the isotopic composition of solid and aqueous phases. When ferrihydrite alone underwent Fe(II)-catalyzed transformation, Fe atoms initially in the aqueous phase mostly formed lepidocrocite, while those from ferrihydrite mostly formed goethite. When goethite was initially present, more goethite was formed from atoms initially in the aqueous phase, and nanogoethite formed from atoms initially in ferrihydrite. Our results suggest that coexisting goethite promotes formation of more goethite via Fe(II)-goethite electron transfer and template-directed nucleation and growth. We further hypothesize that electron transfer onto goethite followed by electron hopping onto ferrihydrite is another possible pathway to goethite formation. Our findings demonstrate that mineral transformation is strongly influenced by the composition of soil solid phases.


Assuntos
Compostos Férricos , Compostos de Ferro , Catálise , Compostos Férricos/química , Compostos Ferrosos , Compostos de Ferro/química , Isótopos , Minerais/química , Oxirredução , Solo , Água
6.
Environ Sci Technol ; 55(3): 1650-1658, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33444011

RESUMO

Manganese is a redox-sensitive element in soils and sediments that plays an important role in the retention of trace elements. Under anoxic conditions, clay minerals were shown to increase Cd retention by favoring the precipitation of Mn(II) phases. In this study, we investigated the influence of aeration on anoxically formed Mn solid phases and its impact on Cd retention in the presence of two clay minerals with low Fe contents, a natural kaolinite (KGa-1b) and a synthetic montmorillonite (Syn-1). Ca-saturated KGa-1b and Syn-1 were pre-equilibrated with Mn2+ and Cd2+ under anoxic conditions for 1 or 30 days and subsequently exposed to air for 1 or 30 days. The analysis with synchrotron X-ray absorption spectroscopy (XAS) revealed that extended anoxic pre-equilibration (30 days) partially prevented the oxidation of sorbed Mn(II) (MnSiO3 and Mn(II)Al-LDH). Extended exposure to ambient air and short anoxic pre-equilibration favored the formation of feitknechtite (ß-MnOOH) and birnessite (δ-MnO2). Aeration resulted in a decrease of pH and a net release of Cd2+ into the solution, indicating that Cd re-sorption by Mn(III/IV)-phases was insufficient to compensate for the release of Cd2+ due to dissolution of Mn(II)-containing phases and the decrease in pH. Our results demonstrate the significance of clay minerals in the (trans)formation of Mn-containing phases and their impact on trace metal retention in environments undergoing fluctuating redox conditions.


Assuntos
Compostos de Manganês , Óxidos , Adsorção , Cádmio , Argila , Minerais , Oxirredução
7.
Environ Sci Technol ; 55(3): 1750-1758, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33492945

RESUMO

Excessive cadmium (Cd) accumulation in rice grain is a global issue that affects human health. The drainage of paddy soils during the grain filling period leads to the remobilization of Cd in soils, resulting in most of the Cd accumulated in rice grain. The rate of Cd remobilization during drainage differs markedly among soils, but the mechanisms underlying these differences remain largely unknown. Using microcosm soil incubation, electrochemical experiments, isotope labeling, and microscopic and spectroscopic analyses, here, we discover the voltaic effect as a novel mechanism controlling the remobilization of Cd during soil drainage. During soil flooding, microbial sulfate reduction results in the formation of various metal sulfides. When the soils are subsequently drained, the various metal sulfides can form within sulfide voltaic cells. The metal sulfides with a lower electrochemical potential act as anodes and are prone to oxidative dissolution, whereas the metal sulfides with a higher potential act as cathodes and are protected from oxidation. This voltaic effect explains why the presence of ZnS (with a low potential) suppresses the oxidative dissolution of Cd sulfides, whereas the presence of CuS (with a high potential) promotes the oxidative dissolution of Cd sulfides. The voltaic effect is applicable to all chalcophile trace metals coupled with the sulfur redox cycle in periodically anoxic-oxic environments, thus playing an important role in the biogeochemistry of trace metals.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Humanos , Oxirredução , Solo , Poluentes do Solo/análise
8.
Environ Sci Technol ; 55(2): 1319-1328, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33377766

RESUMO

Under anoxic conditions, the interactions between As-bearing ferrihydrite (Fh) and As(V)-reducing bacteria are known to cause Fh transformations and As mobilization. However, the impact of different types of organic matter (OM) on microbial As/Fe transformation in As-bearing Fh-organic associations remains unclear. In our study, we therefore exposed arsenate-adsorbed ferrihydrite, ferrihydrite-PGA (polygalacturonic acid), and ferrihydrite-HA (humic acid) complexes to two typical Fe(III)- and As(V)-reducing bacteria, and followed the fate of Fe and As in the solid and aqueous phases. Results show that PGA and HA promoted the reductive dissolution of Fh, resulting in 0.7-1.6 and 0.8-1.9 times more As release than in the OM-free Fh, respectively. This was achieved by higher cell numbers in the presence of PGA, and through Fe-reduction via electron-shuttling facilitated by HA. Arsenic-XAS results showed that the solid-phase arsenite fraction in Fh-PGA and Fh-HA was 15-19% and 27-28% higher than in pure Fh, respectively. The solid-associated arsenite fraction likely increased because PGA promoted cell growth and As(V) reduction, while HA provided electron shuttling compounds for direct microbial As(V)-reduction. Collectively, our findings demonstrate that As speciation and partitioning during microbial reduction of Fh-organic associations are strongly influenced by PGA and HA, as well as the strains' abilities to utilize electron-shuttling compounds.


Assuntos
Arsênio , Compostos Férricos , Ferro , Oxirredução
9.
Environ Sci Technol ; 55(5): 3399-3407, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33554594

RESUMO

Mercury (Hg) is a toxic trace element of global environmental concern which has been increasingly dispersed into the environment since the industrial revolution. In aquatic and terrestrial systems, Hg can be reduced to elemental Hg (Hg0) and escape to the atmosphere or converted to methylmercury (MeHg), a potent neurotoxin that accumulates in food webs. FeII-bearing minerals such as magnetite, green rusts, siderite, and mackinawite are recognized HgII reducers. Another potentially Hg-reducing mineral, which commonly occurs in Fe- and organic/P-rich sediments and soils, is the ferrous iron phosphate mineral vivianite (FeII3(PO4)2·8H2O), but its reaction with HgII has not been studied to date. Here, nanoparticulate vivianite (particle size ∼ 50 nm; FeII content > 98%) was chemically synthesized and characterized by a combination of chemical, spectroscopic, and microscopic analyses. Its ability to reduce HgII was investigated at circumneutral pH under anoxic conditions over a range of FeII/HgII ratios (0.1-1000). For FeII/HgII ratios ≥1, which are representative of natural environments, HgII was very quickly and efficiently reduced to Hg0. The ability of vivianite to reduce HgII was found to be similar to those of carbonate green rust and siderite, two of the most effective Hg-reducing minerals. Our results suggest that vivianite may be involved in abiotic HgII reduction in Fe and organic/P-rich soils and sediments, potentially contributing to Hg evasion while also limiting MeHg formation in these ecosystems.


Assuntos
Mercúrio , Ecossistema , Compostos Ferrosos , Oxirredução , Fosfatos
10.
Environ Sci Technol ; 54(7): 4036-4045, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32131590

RESUMO

Phylogenetically diverse species of bacteria can mediate anaerobic oxidation of ferrous iron [Fe(II)] and/or arsenite [As(III)] coupled to nitrate reduction, impacting the biogeochemical cycles of Fe and As. However, the mechanisms for nitrate-dependent anaerobic oxidation of Fe(II) and As(III) remain unclear. In this study, we isolated two bacterial strains from arsenic-contaminated paddy soils, Ensifer sp. ST2 and Paracoccus sp. QY30. Both strains were capable of anaerobic As(III) oxidation, but only QY30 could oxidize Fe(II) under nitrate-reducing conditions. Both strains contain the As(III) oxidase gene aioA, whose expression was induced greatly by As(III) exposure. Both strains contain the whole suite of genes for complete denitrification, but the nitrite reductase gene nirK was not expressed in QY30 and nitrite accumulated under nitrate-reducing conditions. When the functional nirK gene was knocked out in strain ST2, its nitrite reduction ability was completely abolished and nitrite accumulated in the medium. Moreover, the ST2ΔnirK mutant gained the ability to oxidize Fe(II). When nirK gene from ST2 was introduced to QY30, the recombinant strain QY30::nirK gained the ability to reduce nitrite but lost the ability to oxidize Fe(II). These genetic manipulations did not affect the ability of both strains to oxidize As(III). Our results indicate that nitrite accumulation is required for anaerobic oxidation of Fe(II) but not for As(III) oxidation in these strains. The results suggest that anaerobic Fe(II) oxidation in the two bacterial strains is primarily driven by abiotic reaction of Fe(II) with nitrite, while reduction of nitrate to nitrite is sufficient for redox coupling with anaerobic As(III) oxidation catalyzed by Aio. Deletion of nirK gene in denitrifiers can enhance anaerobic Fe(II) oxidation.


Assuntos
Arsenitos , Nitritos , Anaerobiose , Compostos Ferrosos , Ferro , Nitratos , Oxirredução
11.
Environ Exp Bot ; 177: 104122, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34103771

RESUMO

Pteris vittata (PV) and Pteris quadriaurita (PQ) are reported to hyperaccumulate arsenic (As) when grown in Asrich soil. Yet, little is known about the impact of their unique As accumulation mechanisms on As transformations and cycling at the soil-root interface. Using a combined approach of two-dimensional (2D), sub-mm scale solute imaging of arsenite (AsIII), arsenate (AsV), phosphorus (P), manganese (Mn), iron (Fe) and oxygen (O2), we found localized patterns of AsIII/AsV redox transformations in the PV rhizosphere (AsIII/AsV ratio of 0.57) compared to bulk soil (AsIII/AsV ratio of ≤0.04). Our data indicate that the high As root uptake, translocation and accumulation from the As-rich experimental soil (2080 mg kg-1) to PV fronds (6986 mg kg-1) induced As detoxification via AsV reduction and AsIII root efflux, leading to AsIII accumulation and re-oxidation to AsV in the rhizosphere porewater. This As cycling mechanism is linked to the reduction of O2 and MnIII/IV (oxyhydr)oxides resulting in decreased O2 levels and increased Mn solubilization along roots. Compared to PV, we found 4-fold lower As translocation to PQ fronds (1611 mg kg-1), 2-fold lower AsV depletion in the PQ rhizosphere, and no AsIII efflux from PQ roots, suggesting that PQ efficiently controls As uptake to avoid toxic As levels in roots. Analysis of root exudates obtained from soil-grown PV showed that As acquisition by PV roots was not associated with phytic acid release. Our study demonstrates that two closely-related As-accumulating ferns have distinct mechanisms for As uptake modulating As cycling in As-rich environments.

12.
Environ Sci Technol ; 53(23): 13636-13647, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31718167

RESUMO

Ferrihydrite (Fh) is a poorly crystalline Fe(III)-oxyhydroxide found in abundance in soils and sediments. With a high specific surface area and sorption capacity at circumneutral pH, ferrihydrite is an important player in the biogeochemical cycling of nutrients and trace elements in redox-dynamic environments. Under reducing conditions, exposure to Fe(II) induces mineral transformations in ferrihydrite; the extent and trajectory of which may be greatly influenced by organic matter (OM). However, natural OM is heterogeneous and comprises a range of molecular weights (MWs) and varied functional group compositions. To date, the impact that the chemical composition of the associated OM has on Fe(II)-catalyzed mineral transformations is not clear. To address this knowledge gap, we coprecipitated ferrihydrite with model organic ligands selected to cover a range of MWs (25 000-50 000 vs <200 Da) as well as carboxyl content (polygalacturonic acid (PGA) > citric acid (CA) > galacturonic acid (GA)). Coprecipitates (C:Fe ≈ 0.6) were reacted with 1 mM 57Fe(II) for 1 week at pH 7, with time-resolved solid-phase analysis (via X-ray diffraction, X-ray absorption spectroscopy, and electron microscopy) revealing that all ligands inhibited Fe(II)-catalyzed ferrihydrite mineral transformations and the formation of crystalline secondary mineral phases compared to a pure ferrihydrite. For carboxyl-rich coprecipitates (Fh-PGA and Fh-CA), mineral transformations were less inhibited than in the carboxyl poor Fh-GA, and a crystalline lepidocrocite "shell" was formed surrounding the residual ferrihydrite core. However, Fe isotope analysis revealed that all coprecipitates underwent near complete atom exchange. Collectively, our results highlight that ferrihydrite is indeed an active mineral phase in redox-dynamic environments, but that its stability under reducing conditions, and thus capacity for nutrient and trace element retention, depends on the chemical characteristic of the associated OM, specifically OM-induced changes in the particle surface charge and the distribution of organic functional groups.


Assuntos
Compostos Férricos , Ferro , Ligantes , Minerais , Oxirredução
13.
Environ Sci Technol ; 53(7): 3568-3578, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30758207

RESUMO

Electron transfer to ferric iron in (oxyhydr-)oxides (hereafter iron oxides) is a critical step in many processes that are central to the biogeochemical cycling of elements and to pollutant dynamics. Understanding these processes requires analytical approaches that allow for characterizing the reactivity of iron oxides toward reduction under controlled thermodynamic boundary conditions. Here, we used mediated electrochemical reduction (MER) to follow changes in iron oxide reduction extents and rates during abiotic ferrous iron-induced transformation of six-line ferrihydrite. Transformation experiments (10 mM ferrihydrite-FeIII) were conducted over a range of solution conditions (pHtrans = 6.50 to 7.50 at 5 mM Fe2+ and for pHtrans = 7.00 also at 1 mM Fe2+) that resulted in the transformation of ferrihydrite into thermodynamically more stable goethite or magnetite. The changes in iron oxide mineralogy during the transformations were quantified using X-ray diffraction analysis. MER measurements on iron oxide suspension aliquots collected during the transformations were performed over a range of pHMER at constant applied reduction potential. The extents and rates of iron oxide reduction in MER decreased with decreasing reaction driving force resulting from both increasing pHMER and increasing transformation of ferrihydrite into thermodynamically more stable iron oxides. We show that the decreases in iron oxide reduction extents and rates during ferrihydrite transformations can be linked to the concurrent changes in iron oxide mineralogy.


Assuntos
Compostos Férricos , Óxido Ferroso-Férrico , Compostos de Ferro , Minerais , Oxirredução
14.
Environ Sci Technol ; 53(15): 8736-8746, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31339302

RESUMO

Ferrous iron formed during microbial ferric iron reduction induces phase transformations of poorly crystalline into more crystalline and thermodynamically more stable iron (oxyhydr)oxides. Yet, characterizing the resulting decreases in the reactivity of the remaining oxide ferric iron toward reduction (i.e., its reducibility) has been challenging. Here, we used the reduction of six-line ferrihydrite by Shewanella oneidensis MR-1 as a model system to demonstrate that mediated electrochemical reduction (MER) allows directly following decreases in oxide ferric iron reducibility during the transformation of ferrihydrite into goethite and magnetite which we characterized by X-ray diffraction analysis and transmission electron microscopy imaging. Ferrihydrite was fully reducible in MER at both pHMER of 5.0 and 7.5. Decreases in iron oxide reducibility associated with ferrihydrite transformation into magnetite were accessible at both pHMER because the formed magnetite was not reducible under either of these conditions. Conversely, decreases in iron oxide reducibility associated with goethite formation were apparent only at the highest tested pHMER of 7.5 and thus the thermodynamically least favorable conditions for iron oxide reductive dissolution. The unique capability to adjust the thermodynamic boundary conditions in MER to the specific reducibilities of individual iron (oxyhydr)oxides makes this electrochemical approach broadly applicable for studying changes in iron oxide reducibility in heterogeneous environmental samples such as soils and sediments.


Assuntos
Compostos Férricos , Oxirredução , Solubilidade
15.
Mol Ecol ; 27(24): 5088-5103, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30411828

RESUMO

Edaphic conditions are important determinants of plant fitness. While much has been learnt in recent years about plant adaptation to heavy metal contaminated soils, the genomic basis underlying adaptation to calcareous and siliceous substrates remains largely unknown. We performed a reciprocal germination experiment and whole-genome resequencing in natural calcareous and siliceous populations of diploid Arabidopsis lyrata to test for edaphic adaptation and detect signatures of selection at loci associated with soil-mediated divergence. In parallel, genome scans on respective diploid ecotypes from the Arabidopsis arenosa species complex were undertaken, to search for shared patterns of adaptive genetic divergence. Soil ecotypes of A. lyrata display significant genotype-by-treatment responses for seed germination. Sequence (SNPs) and copy-number variants (CNVs) point towards loci involved in ion transport as the main targets of adaptive genetic divergence. Two genes exhibiting high differentiation among soil types in A. lyrata further share trans-specific single nucleotide polymorphisms with A. arenosa. This work applies experimental and genomic approaches to study edaphic adaptation in A. lyrata and suggests that physiological response to elemental toxicity and deficiency underlies the evolution of calcareous and siliceous ecotypes. The discovery of shared adaptive variation between sister species indicates that ancient polymorphisms contribute to adaptive evolution.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Solo/química , Arabidopsis/fisiologia , Variações do Número de Cópias de DNA , Ecótipo , Ilhas Genômicas , Genótipo , Metais Pesados , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Seleção Genética
16.
Environ Sci Technol ; 52(2): 616-627, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29300080

RESUMO

X-ray amorphous Fe(III)-As(V) coprecipitates are common initial products of oxidative As- and Fe-bearing sulfide weathering, and often control As solubility in mine wastes or mining-impacted soils. The formation conditions of these solids may exert a major control on their mineralogical composition and, hence, As release in the gastric tract of humans after incidental ingestion of As-contaminated soil. Here, we synthesized a set of 35 Fe(III)-As(V) coprecipitates as a function of pH (1.5-8) and initial molar Fe/As ratio (0.8-8.0). The solids were characterized by synchrotron X-ray diffraction, FT-IR spectroscopy, and electrophoretic mobility measurements, and their As bioaccessibility (BAAs) was evaluated using the gastric-phase Solubility/Bioavailability Research Consortium in vitro assay (SBRC-G). The coprecipitates contained 1.01-4.51 mol kg-1 As (molar Fe/Assolid: 1.00-8.29) and comprised varying proportions of X-ray amorphous hydrous ferric arsenates (HFAam) and As(V)-adsorbed ferrihydrite. HFAam was detected up to pH 6 and its fraction decreased with increasing pH and molar Fe/As ratio. Bioaccessible As ranged from 2.9 to 7.3% of total As (x̅ = 4.8%). The BAAs of coprecipitates formed at pH ≤ 4 was highest at formation pH 3 and 4 and controlled by the intrinsically high solubility of the HFAam component, possibly enhanced by sorbed sulfate. In contrast, the BAAs of coprecipitates dominated by As(V)-adsorbed ferrihydrite was much lower and controlled by As readsorption and/or surface precipitation in the gastric fluid. Bioaccessible As increased up to 95% with increasing liquid-to-solid ratio, indicating an enhanced solubility of these solids due to interactions between Fe and the glycine buffer. We conclude (i) that natural Fe(III)-As(V) coprecipitates exhibit a particularly high solubility in the human gastric tract when formed at pH ∼ 3-4 in the presence of sulfate, and (ii) that the in vitro bioaccessibility of As in Fe(III)-As(V) coprecipitates as assessed by tbe SBRC-G assay depends critically on their solid-phase concentration in As-contaminated soil and mine-waste materials.


Assuntos
Arsênio , Poluentes do Solo , Compostos Férricos , Humanos , Mineração , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Environ Sci Technol ; 52(21): 12316-12326, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30991468

RESUMO

Poorly crystalline Fe(III) (oxyhydr)oxides like ferrihydrite are abundant in soils and sediments and are often associated with organic matter (OM) in the form of mineral-organic aggregates. Under anoxic conditions, interactions between aqueous Fe(II) and ferrihydrite lead to the formation of crystalline secondary minerals, like lepidocrocite, goethite, or magnetite. However, the extent to which Fe(II)-catalyzed mineral transformations are influenced by ferrihydrite-associated OM is not well understood. We therefore reacted ferrihydrite-PGA coprecipitates (PGA = polygalacturonic acid, C:Fe molar ratios = 0-2.5) and natural Fe-rich organic flocs (C:Fe molar ratio = 2.2) with 0.5-5.0 mM isotopically labeled 57Fe(II) at pH 7 for 5 weeks. Relying on the combination of stable Fe isotope tracers, a novel application of the PONKCS method to Rietveld fitting of X-ray diffraction (XRD) patterns, and 57Fe Mössbauer spectroscopy, we sought to follow the temporal evolution in Fe mineralogy and elucidate the fate of adsorbed 57Fe(II). At low C:Fe molar ratios (0-0.05), rapid oxidation of surface-adsorbed 57Fe(II) resulted in 57Fe-enriched crystalline minerals and nearly complete mineral transformation within days. With increasing OM content, the atom exchange between the added aqueous 57Fe(II) and Fe in the organic-rich solids still occurred; however, XRD analysis showed that crystalline mineral precipitation was strongly inhibited. For high OM-content materials (C:Fe ≥ 1.2), Mössbauer spectroscopy revealed up to 39% lepidocrocite in the final Fe(II)-reacted samples. Because lepidocrocite was not detectable by XRD, we suggest that the Mössbauer-detected lepidocrocite consisted of nanosized clusters with lepidocrocite-like local structure, similar to the lepidocrocite found in natural flocs. Collectively, our results demonstrate that the C content of ferrihydrite-OM coprecipitates strongly impacts the degree and pathways of Fe mineral transformations and iron atom exchange during reactions with aqueous Fe(II).


Assuntos
Compostos Férricos , Ferro , Catálise , Compostos Ferrosos , Minerais , Oxirredução
18.
Environ Sci Technol ; 52(23): 13698-13707, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30199245

RESUMO

Mofettes (natural geogenic CO2 exhalations) represent excellent sites to study the behavior of Cu in soils and the co-occurrence of different mobilization and immobilization processes since they exhibit both a gradient in redox conditions (oxic to permanently anoxic) and in soil organic matter (SOM; low to high contents). Soil and pore water samples from an 18 m-transect over a mofette showed a complex behavior of Cu, with highest mobility in the transition between oxic and anoxic conditions. Cu(II) sorption experiments on SOM-rich topsoil revealed that Cu mobility under oxic conditions was confined by adsorption to SOM while in the oxygen-free mofette center reduction and precipitation of sulfides was the dominating Cu-sequestering process. In transition areas with low amounts of oxygen (<10%), there was no mineral precipitation, instead high dissolved-to-soil organic carbon ratios strongly increased Cu mobility. Our results show that low stability of SOM formed under oxygen-limited conditions leads to increased Cu mobility unless sulfur-reducing conditions cause Cu sequestration by sulfide precipitation. The interplay of these (im)mobilization processes and especially the unexpectedly high mobility under suboxic conditions have to be considered when assessing Cu mobility along spatial or temporal redox gradients, e.g., at contamination sites or periodically flooded soils.


Assuntos
Cobre , Poluentes do Solo , Carbono , Oxirredução , Solo
19.
Environ Sci Technol ; 52(13): 7317-7326, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29847919

RESUMO

In peatlands, arsenite was reported to be effectively sequestered by sulfhydryl groups of natural organic matter. To which extent porewater arsenite can react with reduced sulfur to form thioarsenates and how this affects arsenic sequestration in peatlands is unknown. Here, we show that, in the naturally arsenic-enriched peatland Gola di Lago, Switzerland, up to 93% of all arsenic species in surface and porewaters were thioarsenates. The dominant species, monothioarsenate, likely formed from arsenite and zerovalent sulfur-containing species. Laboratory incubations with sulfide-reacted, purified model peat showed increasing total arsenic sorption with decreasing pH from 8.5 to 4.5 for both, monothioarsenate and arsenite. However, X-ray absorption spectroscopy revealed no binding of monothioarsenate via sulfhydryl groups. The sorption observed at pH 4.5 was acid-catalyzed dissociation of monothioarsenate, forming arsenite. The lower the pH and the more sulfhydryl sites, the more arsenite sorbed which in turn shifted equilibrium toward further dissociation of monothioarsenate. At pH 8.5, monothioarsenate was stable over 41 days. In conclusion, arsenic can be effectively sequestered by sulfhydryl groups in anoxic, slightly acidic environments where arsenite is the only arsenic species. At neutral to slightly alkaline pH, monothioarsenate can form and its slow transformation into arsenite and low affinity to sulfhydryl groups suggest that this species is mobile in such environments.


Assuntos
Arsênio , Arseniatos , Cinética , Solo , Suíça
20.
Environ Sci Technol ; 51(15): 8254-8262, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28657305

RESUMO

Vanadium (V) is increasingly recognized both as a medical trace element with essential biological functions and as a potentially toxic environmental pollutant, yet the current knowledge on V speciation in soils is limited. Here, we investigated the chemical speciation and extractability of V in highly weathered tropical soils, which are often rich in V compared to soils of temperate climatic regions. Vanadium K-edge X-ray absorption near edge structure (XANES) spectra of soil samples, along with a range of reference compounds differing in V-oxidation state and coordination chemistry, revealed the predominance of V4+/5+ in a primarily octahedral or tetrahedral coordination. The soil spectra were best fitted with linear combinations of reference spectra of V4+ in the structure of kaolinite, V5+ adsorbed to kaolinite, and other V5+-sorbed solids. Vanadate adsorbed to goethite, ferrihydrite, gibbsite, and/or Fe(III)-natural organic matter complexes and V4+ in the structure of goethite may be present, but cannot unequivocally be distinguished from each other by XANES spectroscopy. Sequential and single chemical extractions provided complementary information on the solubility of V under various conditions. The most labile V fractions, interpreted as weakly and strongly adsorbed V5+, are the most relevant to V mobility and bioavailability in the environment, and accounted for only ∼2% of total soil V. Our results demonstrate that kaolinite and Fe oxides can effectively sequester V in highly weathered soils by mechanisms of adsorption and structural incorporation and are relevant to other Fe-oxide-rich environments under acidic and oxic conditions.


Assuntos
Poluentes do Solo , Vanádio , Compostos Férricos , Solo , Solubilidade , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA