Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Mol Cancer Ther ; 21(8): 1326-1336, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35666803

RESUMO

Probody therapeutics (Pb-Txs) are conditionally activated antibody-drug conjugates (ADCs) designed to remain inactive until proteolytically activated in the tumor microenvironment, enabling safer targeting of antigens expressed in both tumor and normal tissue. Previous attempts to target CD71, a highly expressed tumor antigen, have failed to establish an acceptable therapeutic window due to widespread normal tissue expression. This study evaluated whether a probody-drug conjugate targeting CD71 can demonstrate a favorable efficacy and tolerability profile in preclinical studies for the treatment of cancer. CX-2029, a Pb-Tx conjugated to maleimido-caproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E, was developed as a novel cancer therapeutic targeting CD71. Preclinical studies were performed to evaluate the efficacy and safety of this anti-CD71 PDC in patient-derived xenograft (PDX) mouse models and cynomolgus monkeys, respectively. CD71 expression was detected at high levels by IHC across a broad range of tumor and normal tissues. In vitro, the masked Pb-Tx form of the anti-CD71 PDC displayed a >50-fold reduced affinity for binding to CD71 on cells compared with protease-activated, unmasked anti-CD71 PDC. Potent in vivo tumor growth inhibition (stasis or regression) was observed in >80% of PDX models (28/34) at 3 or 6 mg/kg. Anti-CD71 PDC remained mostly masked (>80%) in circulation throughout dosing in cynomolgus monkeys at 2, 6, and 12 mg/kg and displayed a 10-fold improvement in tolerability compared with an anti-CD71 ADC, which was lethal. Preclinically, anti-CD71 PDC exhibits a highly efficacious and acceptable safety profile that demonstrates the utility of the Pb-Tx platform to target CD71, an otherwise undruggable target. These data support further clinical development of the anti-CD71 PDC CX-2029 as a novel cancer therapeutic.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Chumbo , Macaca fascicularis/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Pharmacol ; 79(6): 953-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21427169

RESUMO

Deeper knowledge of pharmacokinetic and pharmacodynamic (PK/PD) concepts for RNA therapeutics is important to streamline the drug development process and for rigorous selection of best performing drug candidates. Here we characterized the PK/PD relationship for small interfering RNAs (siRNAs) targeting luciferase by examining siRNA concentration in plasma and liver, the temporal RNA-induced silencing complex binding profiles, mRNA reduction, and protein inhibition measured by noninvasive bioluminescent imaging. A dose-dependent and time-related decrease in bioluminescence was detected over 25 days after a single treatment of a lipid nanoparticle-formulated siRNA targeting luciferase messenger RNA. A direct relationship was observed between the degree of in vivo mRNA and protein reduction and the Argonaute2 (Ago2)-bound siRNA fraction but not with the total amount of siRNA found in the liver, suggesting that the Ago2-siRNA complex is the key determinant of target inhibition. These observations were confirmed for an additional siRNA that targets endogenously expressed Sjögren syndrome antigen B (Ssb) mRNA, indicating that our observations are not limited to a transgenic mouse system. Our data provide detailed information of the temporal regulation of siRNA liver delivery, Ago2 loading, mRNA reduction, and protein inhibition that are essential for the rapid and cost-effective clinical development of siRNAs therapeutics.


Assuntos
Inativação Gênica , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Primers do DNA , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase
4.
Pharmaceutics ; 13(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34575469

RESUMO

Proteases are involved in the control of numerous physiological processes, and their dysregulation has been identified in a wide range of pathologies, including cancer. Protease activity is normally tightly regulated post-translationally and therefore cannot be accurately estimated based on mRNA or protein expression alone. While several types of zymography approaches to estimate protease activity exist, there remains a need for a robust and reliable technique to measure protease activity in biological tissues. We present a novel quantitative ex vivo zymography (QZ) technology based on Probody® therapeutics (Pb-Tx), a novel class of protease-activated cancer therapeutics that contain a substrate linker cleavable by tumor-associated proteases. This approach enables the measurement and comparison of protease activity in biological tissues via the detection of Pb-Tx activation. By exploiting substrate specificity and selectivity, cataloguing and differentiating protease activities is possible, with further refinement achieved using protease-specific inhibitors. Using the QZ assay and human tumor xenografts, patient tumor tissues, and patient plasma, we characterized protease activity in preclinical and clinical samples. The QZ assay offers the potential to increase our understanding of protease activity in tissues and inform diagnostic and therapeutic development for diseases, such as cancer, that are characterized by dysregulated proteolysis.

5.
Cancer Immunol Res ; 9(12): 1451-1464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635485

RESUMO

Immune-checkpoint blockade has revolutionized cancer treatment. However, most patients do not respond to single-agent therapy. Combining checkpoint inhibitors with other immune-stimulating agents increases both efficacy and toxicity due to systemic T-cell activation. Protease-activatable antibody prodrugs, known as Probody therapeutics (Pb-Tx), localize antibody activity by attenuating capacity to bind antigen until protease activation in the tumor microenvironment. Herein, we show that systemic administration of anti-programmed cell death ligand 1 (anti-PD-L1) and anti-programmed cell death protein 1 (anti-PD-1) Pb-Tx to tumor-bearing mice elicited antitumor activity similar to that of traditional PD-1/PD-L1-targeted antibodies. Pb-Tx exhibited reduced systemic activity and an improved nonclinical safety profile, with markedly reduced target occupancy on peripheral T cells and reduced incidence of early-onset autoimmune diabetes in nonobese diabetic mice. Our results confirm that localized PD-1/PD-L1 inhibition by Pb-Tx can elicit robust antitumor immunity and minimize systemic immune-mediated toxicity. These data provide further preclinical rationale to support the ongoing development of the anti-PD-L1 Pb-Tx CX-072, which is currently in clinical trials.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/uso terapêutico , Imunoterapia/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Microambiente Tumoral
6.
Theranostics ; 10(13): 5815-5828, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483421

RESUMO

Probody® therapeutics are recombinant masked monoclonal antibody (mAb) prodrugs that become activated by proteases present in the tumor microenvironment. This makes them attractive for use as Probody drug conjugates (PDCs). CX-2009 is a novel PDC with the toxic drug DM4 coupled to an anti-CD166 Probody therapeutic. CD166 is overexpressed in multiple tumor types and to a lesser extent by healthy tissue. Methods: The tumor targeting potential of CX-2009 was assessed by performing 89Zr-immuno-PET/biodistribution/therapy studies in a CD166-positive H292 lung cancer mouse model. Head-to-head comparisons of CX-2009 with the Probody therapeutic without DM4 (CX-191), the unmasked antibody drug conjugate (ADC) CX-1031, and the parental mAb CX-090 were performed. All constructs were 89Zr labeled in a GMP compliant way, administered at 10, 110, or 510 µg, and ex vivo biodistribution was assessed at 24, 72, and 168 hours post-injection. Results: Comparable biodistribution was observed for all constructs, confirmed with PET/CT. Tumors showed the highest uptake: 21.8 ± 2.3 ([89Zr]Zr-CX-2009), 21.8 ± 5.0 ([89Zr]Zr­CX-191), 18.7 ± 2.5 ([89Zr]Zr-CX-1031) and 20.8 ± 0.9 %ID/g ([89Zr]Zr-CX-090) at 110 µg injected. Increasing the dose to 510 µg resulted in lower tumor uptake and higher blood levels for all constructs, suggesting receptor saturation. In addition, CX-2009 and CX-1031 showed similar therapeutic potential. Conclusions: CX-2009 is optimally capable of targeting CD166-expressing tumors when compared with its derivatives, implying that enzymatic activation inside the tumor, required to allow CD166 binding, does not limit tumor targeting. Because CX-2009 does not bind to mouse CD166, however, reduced targeting of healthy organs should be confirmed in ongoing clinical 89Zr-immuno-PET studies.


Assuntos
Molécula de Adesão de Leucócito Ativado/imunologia , Maitansina/farmacologia , Pró-Fármacos/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Zircônio/química , Zircônio/farmacologia
7.
Sci Transl Med ; 5(207): 207ra144, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24132639

RESUMO

Target-mediated toxicity constitutes a major limitation for the development of therapeutic antibodies. To redirect the activity of antibodies recognizing widely distributed targets to the site of disease, we have applied a prodrug strategy to create an epidermal growth factor receptor (EGFR)-directed Probody therapeutic-an antibody that remains masked against antigen binding until activated locally by proteases commonly active in the tumor microenvironment. In vitro, the masked Probody showed diminished antigen binding and cell-based activities, but when activated by appropriate proteases, it regained full activity compared to the parental anti-EGFR antibody cetuximab. In vivo, the Probody was largely inert in the systemic circulation of mice, but was activated within tumor tissue and showed antitumor efficacy that was similar to that of cetuximab. The Probody demonstrated markedly improved safety and increased half-life in nonhuman primates, enabling it to be dosed safely at much higher levels than cetuximab. In addition, we found that both Probody-responsive xenograft tumors and primary tumor samples from patients were capable of activating the Probody ex vivo. Probodies may therefore improve the safety profile of therapeutic antibodies without compromising efficacy of the parental antibody and may enable the wider use of empowered antibody formats such as antibody-drug conjugates and bispecifics.


Assuntos
Anticorpos Antineoplásicos/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cetuximab , Humanos , Imuno-Histoquímica , Macaca fascicularis , Camundongos , Camundongos Nus , Pró-Fármacos/toxicidade , Pele/efeitos dos fármacos , Pele/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA