Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 56(17): 5086-5091, 2017 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047660

RESUMO

Electrically pumped heterogeneously integrated III-V/SiO2 semiconductor on-chip lasers with different types of etched facet reflectors are designed and fabricated and their lasing performances are characterized and compared. The III-V quantum-well-based epitaxial layers are bonded on silica-on-silicon substrates and fabricated to form Fabry-Perot lasers with dry-etched rear facets. Three types of reflectors are demonstrated, which are etched facets terminated by air, benzocyclobutene, and metal with a thin layer of SiO2 insulator in-between. The laser devices are characterized and compared, including lasing threshold, external quantum efficiency, and output power, and show the impact of different types of etched facet reflectors on lasing performance.

2.
Opt Lett ; 40(7): 1378-81, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831337

RESUMO

A new heterogeneously integrated III-V/Si laser structure is reported in this report that consists of a III-V ridge waveguide gain section on silicon, III-V/Si optical vertical interconnect accesses (VIAs), and silicon-on-insulator (SOI) nanophotonic waveguide sections. The III-V semiconductor layers are introduced on top of the 300-nm-thick SOI layer through low temperature, plasma-assisted direct wafer-bonding and etched to form a III-V ridge waveguide on silicon as the gain section. The optical VIA is formed by tapering the III-V and the beneath SOI in the same direction with a length of 50 µm for efficient coupling of light down to the 600 nm wide silicon nanophotonic waveguide or vice versa. Fabrication details and specification characterizations of this heterogeneous III-V/Si Fabry-Perot (FP) laser are given. The fabricated FP laser shows a continuous-wave lasing with a threshold current of 65 mA at room temperature, and the slope efficiency from single facet is 144 mW/A. The maximal single facet emitting power is about 4.5 mW at a current of 100 mA, and the side-mode suppression ratio is ∼30 dB. This new heterogeneously integrated III-V/Si laser structure demonstrated enables more complex laser configuration with a sub-system on-chip for various applications.

3.
Opt Lett ; 39(12): 3567-70, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978538

RESUMO

In this Letter, we report for the first time to our knowledge that all-optical switching gain can be achieved with a dual-wavelength control versus pump beam scheme in a single semiconductor waveguide structure. That means a weak optical beam can switch a strong optical beam. Moreover, a high switching speed of 10-100 Gb/s can be achieved. The all-optical switching is simulated numerically via a multilevel multielectron (MLME) FDTD program capable of modeling complex semiconductor band properties. It is shown that a weak control/input-signal beam at a longer wavelength is able to switch the transmission of a strong pump/output-signal beam at a shorter wavelength. A 50 Gbps and 0.5 pJ per bit switching operation with switching gain of around 10 is shown for a 40 µm-long waveguide with pump beam power around 20 mW based on bulk InGaAsP material and a 300 nm×300 nm waveguide (the control beam power is 1/10 of that for the pump).

4.
Appl Opt ; 52(36): 8845-53, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513952

RESUMO

All-optical switching operation based on manipulation of absorption in a three-waveguide directional coupler is theoretically investigated. The proposed structure consists of one absorptive central waveguide and two identical passive side waveguides. Optically induced absorption change in the central waveguide effectively controls the coupling of light between the two side waveguides, leading to optical switching action. The proposed architecture alleviates the fabrication challenges and waveguide index matching conditions that limit previous demonstrations of similar switching schemes based on a two-waveguide directional coupler. The proposed device accommodates large modal index difference between absorptive and passive waveguides without compromising the switching extinction ratio.

5.
Drug Saf ; 43(1): 57-66, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605285

RESUMO

INTRODUCTION: Identification of adverse events and determination of their seriousness ensures timely detection of potential patient safety concerns. Adverse event seriousness is a key factor in defining reporting timelines and is often performed manually by pharmacovigilance experts. The dramatic increase in the volume of safety reports necessitates exploration of scalable solutions that also meet reporting timeline requirements. OBJECTIVE: The aim of this study was to develop an augmented intelligence methodology for automatically identifying adverse event seriousness in spontaneous, solicited, and medical literature safety reports. Deep learning models were evaluated for accuracy and/or the F1 score against a ground truth labeled by pharmacovigilance experts. METHODS: Using a stratified random sample of safety reports received by Celgene, we developed three neural networks for addressing identification of adverse event seriousness: (1) a binary adverse-event level seriousness classifier; (2) a classifier for determining seriousness categorization at the adverse-event level; and (3) an annotator for identifying seriousness criteria terms to provide supporting evidence at the document level. RESULTS: The seriousness classifier achieved an accuracy of 83.0% in post-marketing reports, 92.9% in solicited reports, and 86.3% in medical literature reports. F1 scores for seriousness categorization were 77.7 for death, 78.9 for hospitalization, and 75.5 for important medical events. The seriousness annotator achieved an F1 score of 89.9 in solicited reports, and 75.2 in medical literature reports. CONCLUSIONS: The results of this study indicate that a neural network approach can provide an accurate and scalable solution for potentially augmenting pharmacovigilance practitioner determination of adverse event seriousness in spontaneous, solicited, and medical literature reports.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Redes Neurais de Computação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Humanos , Farmacovigilância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA