Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Gastroenterology ; 144(2): 381-391, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23142137

RESUMO

BACKGROUND & AIMS: The Wnt signaling pathway is required for maintenance of the intestinal epithelia; blocking this pathway reduces the proliferative capacity of the intestinal stem cells. However, aberrant Wnt signaling leads to intestinal cancer. We investigated the roles of the Wnt pathway in homeostasis of the intestinal epithelium and during malignant transformation in human cells and mice. METHODS: We performed chromatin immunoprecipitation (ChIP) with DNA microarray analysis (ChIP-on-chip) to identify genes regulated by Wnt signaling in human colorectal cancer cells Colo320, DLD1, LS174T, and SW480. Formation of intestinal tumor was induced in C57BL/6J mice using azoxymethane and dextran sulfate. Intestinal tissues from these mice, as well as Apc(+/Min) and Apc(CKO/CKO)/Lgr5-EGFP-IRES-CreERT2 mice, were analyzed by immunohistochemistry and in situ hybridization. RESULTS: We identified promoter regions of 960 genes that interacted with the Wnt pathway nuclear effector T-cell factor 4 in 4 different human colorectal cancer-derived cell lines; 18 of these promoters were present in all chromatin precipitates. Wnt signaling up-regulated a member of the tumor necrosis factor receptor superfamily called TROY. Levels of TROY messenger RNA were increased in human cells with deficiencies in the adenomatous polyposis coli (APC) gene and in cells stimulated with the Wnt3a ligand. Expression of Troy was significantly up-regulated in neoplastic tissues from mice during intestinal tumorigenesis. Lineage tracing experiments revealed that Troy is produced specifically by fast-cycling intestinal stem cells. TROY associated with a unique marker of these cells, leucine-rich repeat-containing G-protein coupled receptor (LGR) 5. In organoids established from the intestinal crypts, Troy suppressed signaling mediated by R-spondin, a Wnt agonist. CONCLUSIONS: TROY is up-regulated in human colorectal cancer cell lines and in intestinal tumors in mice. It functions as a negative modulator of the Wnt pathway in LGR5-positive stem cells.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Mucosa Intestinal/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Diabetes Res ; 2013: 589451, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23841104

RESUMO

Type 1 Diabetes (T1D) is considered to be a T-helper- (Th-) 1 autoimmune disease; however, T1D pathogenesis likely involves many factors, and sufficient tools for autoreactive T cell detection for the study of this disease are currently lacking. In this study, using gene expression microarrays, we analysed the effect of diabetes-associated autoantigens on peripheral blood mononuclear cells (PBMCs) with the purpose of identifying (pre)diabetes-associated cell processes. Twelve patients with recent onset T1D, 18 first-degree relatives of the TD1 patients (DRL; 9/18 autoantibody positive), and 13 healthy controls (DV) were tested. PBMCs from these individuals were stimulated with a cocktail of diabetes-associated autoantigens (proinsulin, IA-2, and GAD65-derived peptides). After 72 hours, gene expression was evaluated by high-density gene microarray. The greatest number of functional differences was observed between relatives and controls (69 pathways), from which 15% of the pathways belonged to "immune response-related" processes. In the T1D versus controls comparison, more pathways (24%) were classified as "immune response-related." Important pathways that were identified using data from the T1D versus controls comparison were pathways involving antigen presentation by MHCII, the activation of Th17 and Th22 responses, and cytoskeleton rearrangement-related processes. Genes involved in Th17 and TGF-beta cascades may represent novel, promising (pre)diabetes biomarkers.


Assuntos
Autoantígenos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Leucócitos Mononucleares/imunologia , Estado Pré-Diabético/imunologia , Adolescente , Adulto , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Autoantígenos/metabolismo , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Expressão Gênica , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA