RESUMO
The earliest cortical neural signals following consciously perceived visual stimuli in humans are poorly understood. Using intracranial electroencephalography, we investigated neural activity changes associated with the earliest stages of stimulus detection during visual conscious perception. Participants (N = 10; 1,693 electrode contacts) completed a continuous performance task where subjects were asked to press a button when they saw a target letter among a series of nontargets. Broadband gamma power (40-115 Hz) was analyzed as marker of cortical population neural activity. Regardless of target or nontarget letter type, we observed early gamma power changes within 30-180 ms from stimulus onset in a network including increases in bilateral occipital, fusiform, frontal (including frontal eye fields), and medial temporal cortex; increases in left lateral parietal-temporal cortex; and decreases in the right anterior medial occipital cortex. No significant differences were observed between target and nontarget stimuli until >180 ms post-stimulus, when we saw greater gamma power increases in left motor and premotor areas, suggesting a possible role in perceptual decision-making and/or motor responses with the right hand. The early gamma power findings support a broadly distributed cortical visual detection network that is engaged at early times tens of milliseconds after signal transduction from the retina.
Assuntos
Mapeamento Encefálico , Eletroencefalografia , Humanos , Percepção Visual/fisiologia , Visão Ocular , Estado de Consciência/fisiologiaRESUMO
Semi-structured interviews of patient accounts and caregiver, or informant, perspectives are a beneficial resource for patients suffering from diseases with complex symptomatology, such as cerebellar ataxia. The aim of this study was to identify, quantify, and compare the ways in which cerebellar ataxia patients' and informants' quality of life had changed as a result of living with ataxia. Using a semi-structured interview, responses were collected from patients and informants regarding motor, cognitive, and psychosocial variables. Responses were also collected from patients and informants to open-ended questions that were subsequently categorized into 15 quality of life themes that best represented changes experienced by the patients and informants. Ataxia patients and informants agreed as to the severity of posture/gait, daily activities/fine motor tasks, speech/feeding/swallowing, and oculomotor/vision impairment. It was also demonstrated that severity ratings for specific motor-related functions strongly correlated with corresponding functions within the International Cooperative Ataxia Rating Scale (ICARS), and that this interview identified frequency associations between motor impairments and specific psychosocial difficulties, which could be useful for prognostic purposes. Overall, the information obtained from this study characterized the symptoms and challenges to ataxia patients and their caregivers, which could serve as a useful educational resource for those affected by ataxia, clinicians, and researchers.
Assuntos
Ataxia Cerebelar , Ataxia , Ataxia Cerebelar/diagnóstico , Marcha/fisiologia , Humanos , Qualidade de Vida , AutorrelatoRESUMO
Understanding the neural basis of consciousness is a fundamental goal of neuroscience, and sensory perception is often used as a proxy for consciousness in empirical studies. However, most studies rely on reported perception of visual stimuli. Here we present behavior, high density scalp EEG and eye metric recordings collected simultaneously during a novel tactile threshold perception task. We found significant N80, N140 and P300 event related potentials in perceived trials and in perceived versus not perceived trials. Significance was limited to a P100 and P300 in not perceived trials. We also found an increase in pupil diameter and blink rate and a decrease in microsaccade rate following perceived relative to not perceived tactile stimuli. These findings support the use of eye metrics as a measure of physiological arousal associated with conscious perception. Eye metrics may also represent a novel path toward the creation of tactile no-report tasks in the future.
Assuntos
Estado de Consciência , Percepção do Tato , Estado de Consciência/fisiologia , Eletroencefalografia , Humanos , Couro Cabeludo , Tato/fisiologia , Percepção Visual/fisiologiaRESUMO
During visual conscious perception, the earliest responses linked to signal detection are little known. The current study aims to reveal the cortical neural activity changes in the earliest stages of conscious perception using recordings from intracranial electrodes. Epilepsy patients (N=158) were recruited from a multi-center collaboration and completed a visual word recall task. Broadband gamma activity (40-115Hz) was extracted with a band-pass filter and gamma power was calculated across subjects on a common brain surface. Our results show early gamma power increases within 0-50ms after stimulus onset in bilateral visual processing cortex, right frontal cortex (frontal eye fields, ventral medial/frontopolar, orbital frontal) and bilateral medial temporal cortex regardless of whether the word was later recalled. At the same early times, decreases were seen in the left rostral middle frontal gyrus. At later times after stimulus onset, gamma power changes developed in multiple cortical regions. These included sustained changes in visual and other association cortical networks, and transient decreases in the default mode network most prominently at 300-650ms. In agreement with prior work in this verbal memory task, we also saw greater increases in visual and medial temporal regions as well as prominent later (> 300ms) increases in left hemisphere language areas for recalled versus not recalled stimuli. These results suggest an early signal detection network in the frontal, medial temporal, and visual cortex is engaged at the earliest stages of conscious visual perception.
Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Encéfalo , Córtex Cerebral , Cognição , Estado de Consciência , Eletroencefalografia , Epilepsia/fisiopatologia , Feminino , Lobo Frontal/fisiologia , Humanos , Idioma , Masculino , Memória , Rememoração Mental , Pessoa de Meia-Idade , Lobo Temporal/fisiologia , Adulto JovemRESUMO
While cerebellar ataxia (CA) is a neurodegenerative disease known for motor impairment, changes in mood have also been reported. A full account of neuropsychiatric symptomology in CA may guide improvements in treatment regimes, measure the presence and severity of sub-clinical neuropsychiatric disturbance symptomology in CA, and compare patient versus informant symptom recognition. Neuropsychiatric phenomena were gathered from CA patients with genetic and unknown etiologies and their informants (e.g., spouse or parent). Information was obtained from in-person interviews and the Center for Epidemiologic Studies Depression Scale. Responses were converted to the Neuropsychiatric Inventory-Questionnaire (NPI-Q) scores by consensus ratings. Patient NPI-Q scores were evaluated for symptom prevalence and severity relative to those obtained from healthy controls. Patient-informant NPI-Q score disagreements were evaluated. In this cohort, 95% of patients presented with at least one neuropsychiatric symptom and 51% of patients with three or more symptoms. The most common symptoms were anxiety, depression, nighttime behaviors (e.g., interrupted sleep), irritability, disinhibition, abnormal appetite, and agitation. The prevalence of these neuropsychiatric symptoms was uniform across patients with genetic versus unknown etiologies. Patient and informant symptom report disagreements reflected that patients noted sleep impairment and depression, while informants noted irritability and agitation. Neuropsychiatric disturbance is highly prevalent in patients with CA and contributes to the phenomenology of CA, regardless of etiology. Clinicians should monitor psychiatric health in their CA patients, considering that supplemental information from informants can help gauge the impact on family members and caregivers.
Assuntos
Ataxia Cerebelar/complicações , Transtornos Mentais/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
The cerebellum recognizes sequences from prior experiences and uses this information to generate internal models that predict future outcomes in a feedforward manner [Front Hum Neurosci 8: 475, 2014; Cortex 47: 137-44, 2011; Cerebellum 7: 611-5, 2008; J Neurosci 26: 9107-16, 2006]. This process has been well documented in the motor domain, but the cerebellum's role in cognitive sequencing, within the context of implicit versus explicit processes, is not well characterized. In this study, we tested individuals with cerebellar ataxia and healthy controls to clarify the role of the cerebellum sequencing using variations on implicit versus explicit and motor versus cognitive demands across five experiments. Converging results across these studies suggest that cerebellar feedforward mechanisms may be necessary for sequencing in the implicit domain only. In the ataxia group, rhythmic tapping, rate of motor learning, and implicit sequence learning were impaired. However, for cognitive sequencing that could be accomplished using explicit strategies, the cerebellar group performed normally, as though they shifted to extra-cerebellar mechanisms to compensate. For example, when cognitive and motor functions relied on cerebellar function simultaneously, the ataxia group's motor function was unaffected, in contrast to that of controls whose motor performance declined as a function of cognitive load. These findings indicated that the cerebellum is not critical for all forms of sequencing per se. Instead, it plays a fundamental role for sequencing within the implicit domain, whether functions are motor or cognitive. Moreover, individuals with cerebellar ataxia are generally able to compensate for cognitive sequencing when explicit strategies are available in order to preserve resources for motor function.
Assuntos
Ataxia Cerebelar/fisiopatologia , Cerebelo/fisiologia , Aprendizagem/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Conscious perception occurs within less than 1 s. To study events on this time scale we used direct electrical recordings from the human cerebral cortex during a conscious visual perception task. Faces were presented at individually titrated visual threshold for 9 subjects while measuring broadband 40-115 Hz gamma power in a total of 1621 intracranial electrodes widely distributed in both hemispheres. Surface maps and k-means clustering analysis showed initial activation of visual cortex for both perceived and non-perceived stimuli. However, only stimuli reported as perceived then elicited a forward-sweeping wave of activity throughout the cerebral cortex accompanied by large-scale network switching. Specifically, a monophasic wave of broadband gamma activation moves through bilateral association cortex at a rate of approximately 150 mm/s and eventually reenters visual cortex for perceived but not for non-perceived stimuli. Meanwhile, the default mode network and the initial visual cortex and higher association cortex networks are switched off for the duration of conscious stimulus processing. Based on these findings, we propose a new "switch-and-wave" model for the processing of consciously perceived stimuli. These findings are important for understanding normal conscious perception and may also shed light on its vulnerability to disruption by brain disorders.
Assuntos
Córtex Cerebral/fisiologia , Estado de Consciência/fisiologia , Ritmo Gama/fisiologia , Neurônios/fisiologia , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa/métodosRESUMO
Dynamic attention states are necessary to navigate the ever changing task demands of daily life. Previous investigations commonly utilize a block paradigm to study sustained and transient changes in attention networks. fMRI investigations have shown that sustained attention in visual block design attention tasks corresponds to decreased signal in the default mode and visual processing networks. While task negative networks are anticipated to decrease during active task engagement, it is unexpected that visual networks would also be suppressed during a visual task where event-related fMRI studies have found transient increases to visual stimuli. To resolve these competing results, the current investigations utilized intracranial EEG to directly interrogate visual and default mode network dynamics during a visual continuous performance task. We used the electrophysiological data to model expected fMRI signals and to maximize interpretation of current results with previous investigations. Results show broadband gamma power decreases in the default mode network, corresponding to previous EEG and fMRI findings. Meanwhile, visual processing regions including the primary visual cortex and fusiform gyrus demonstrate both sustained decreases during task engagement and stimuli-driven transient increases in gamma power. Modeled fMRI based on gamma power reproduces signal decreases reported in the fMRI literature, and emphasizes the insensitivity of fMRI to transient, regularly spaced signal changes embedded within sustained network dynamics. The signal processing functions of the dynamic visual and default mode network changes explored in this study are unknown but may be elucidated through further investigation.
Assuntos
Encéfalo/fisiologia , Envelhecimento Cognitivo/fisiologia , Tomada de Decisões/fisiologia , Adulto , Idoso , Eletrocorticografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Poor visuospatial skills can disrupt activities of daily living. The cerebellum has been implicated in visuospatial processing, and patients with cerebellar injury often exhibit poor visuospatial skills, as measured by impaired memory for the figure within the Rey-Osterrieth complex figure task (ROCF). Visuospatial skills are an inherent aspect of the ROCF; however, figure organization (i.e., the order in which the figure is reconstructed by the participant) can influence recall ability. The objective of this study was to examine and compare visuospatial and organization skills in people with cerebellar ataxia. We administered the ROCF to patients diagnosed with cerebellar ataxia and healthy controls. The cerebellar ataxia group included patients that carried a diagnosis of spinocerebellar ataxia (any subtype), autosomal dominant cerebellar ataxia, or cerebellar ataxia with unknown etiology. Primary outcome measures were organization and recall performance on the ROCF, with supplemental information derived from cognitive tests of visuospatial perception, working memory, processing speed, and motor function. Cerebellar ataxia patients revealed impaired figure organization relative to that of controls. Figure copy was impaired in the patients, but their subsequent recall performance was normal, suggesting compensation from initial organization and copying strategies. In controls, figure organization predicted recall performance, but this relationship was not observed in the patients. Instead, processing speed predicted patients' recall accuracy. Supplemental tasks indicated that visual perception was intact in the cerebellar ataxia group and that performance deficits were more closely tied to organization strategies than with visuospatial skills.
Assuntos
Ataxia Cerebelar/psicologia , Rememoração Mental , Percepção Espacial , Memória Espacial , Percepção Visual , Adulto , Idoso , Ataxia Cerebelar/genética , Feminino , Mãos , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Desempenho PsicomotorRESUMO
Human immunodeficiency virus (HIV) is often contracted through engaging in risky reward-motivated behaviors such as needle sharing and unprotected sex. Understanding the factors that make an individual more vulnerable to succumbing to the temptation to engage in these risky behaviors is important to limiting the spread of HIV. One potential source of this vulnerability concerns the degree to which an individual is able to resist paying attention to irrelevant reward information. In the present study, we examine this possible link by characterizing individual differences in value-based attentional bias in a sample of HIV+ individuals with varying histories of risk-taking behavior. Participants learned associations between experimental stimuli and monetary reward outcome. The degree of attentional bias for these reward-associated stimuli, reflected in their ability to capture attention when presented as task-irrelevant distractors, was then assessed both immediately and six months following reward learning. Value-driven attentional capture was related to substance abuse history and non-planning impulsiveness during the time leading up to contraction of HIV as measured via self-report. These findings suggest a link between the ability to ignore reward-associated information and prior HIV-related risk-taking behavior. Additionally, particular aspects of HIV-associated neurocognitive disorders were related to attentional bias, including motor deficits commonly associated with HIV-induced damage to the basal ganglia.
Assuntos
Atenção , Infecções por HIV/psicologia , Recompensa , Assunção de Riscos , Adulto , Idoso , Análise de Variância , Antivirais/uso terapêutico , Feminino , Seguimentos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Individualidade , Entrevista Psicológica , Masculino , Pessoa de Meia-Idade , Atividade Motora , Testes Neuropsicológicos , Tempo de Reação , Autorrelato , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/psicologiaRESUMO
Pupillometry is a popular method because pupil size is easily measured, sensitive to central neural activity, and associated with behavior, cognition, emotion, and perception. Currently, there is no method for online monitoring phases of pupil size fluctuation. We introduce rtPupilPhase - an open source software that automatically detects trends in pupil size in real time, enabling novel implementations of real time pupillometry towards achieving numerous research and translational goals. We validated the performance of rtPupilPhase on human, rodent, and monkey pupil data and propose future applications of real time pupillometry.
RESUMO
Afterimages are illusory, visual conscious perceptions. A widely accepted theory is that afterimages are caused by retinal signaling that continues after the physical disappearance of a light stimulus. However, afterimages have been reported without preceding visual, sensory stimulation (e.g. conditioned afterimages and afterimages induced by illusory vision). These observations suggest the role of top-down brain mechanisms in afterimage conscious perception. Therefore, some afterimages may share perceptual features with sensory-independent conscious perceptions (e.g. imagery, hallucinations, and dreams) that occur without bottom-up sensory input. In the current investigation, we tested for a link between the vividness of visual imagery and afterimage conscious perception. Participants reported their vividness of visual imagery and perceived sharpness, contrast, and duration of negative afterimages. The afterimage perceptual features were acquired using perception matching paradigms that were validated on image stimuli. Relating these perceptual reports revealed that the vividness of visual imagery positively correlated with afterimage contrast and sharpness. These behavioral results support shared neural mechanisms between visual imagery and afterimages. However, we cannot exclude alternative explanations, including demand characteristics and afterimage perception reporting inaccuracy. This study encourages future research combining neurophysiology recording methods and afterimage paradigms to directly examine the neural mechanisms of afterimage conscious perception.
RESUMO
Afterimages are illusory, visual conscious perceptions. A widely accepted theory is that afterimages are caused by retinal signaling that continues after the physical disappearance of a light stimulus. However, afterimages have been reported without preceding visual, sensory stimulation (e.g., conditioned afterimages and afterimages induced by illusory vision). These observations suggest the role of top-down, brain mechanisms in afterimage conscious perception. Therefore, some afterimages may share perceptual features with sensory-independent conscious perceptions (e.g., imagery, hallucinations, and dreams) that occur without bottom-up, sensory input. In the current investigation, we tested for a link between the vividness of visual imagery and afterimage conscious perception. Participants reported their vividness of visual imagery and perceived sharpness, contrast, and duration of negative afterimages. The afterimage perceptual features were acquired using perception matching paradigms that were validated on image stimuli. Relating these perceptual reports revealed that the vividness of visual imagery positively correlated with afterimage contrast and sharpness. These behavioral results support shared neural mechanisms between visual imagery and afterimages. This study encourages future research combining neurophysiology recording methods and afterimage paradigms to directly examine the neural mechanisms of afterimage conscious perception.
RESUMO
Consciousness remains a mystery despite centuries of inquiry, but neuroscience research is beginning to offer insights into the conscious brain. Although the influence of neuroscience in decoding consciousness is growing, it is distinctly absent from collegiate education. Many psychology and neuroscience textbooks devote a single paragraph or an appendix to consciousness. Simultaneously absent from undergraduate education are opportunities for students to practice teaching skills. Our course, Consciousness and Mind (PSYC 499), was designed to address these inadequacies. The course was designed and taught by an undergraduate student at Ohio Wesleyan University and supervised by the Director of the Neuroscience program. The class met once a week for a three hour block period, which required active engagement to keep students interested and motivated. Several novel class activities were designed to hold student attention and offer a checkpoint for the student-instructor to assess the strength of the preceding lecture. These activities included varied group discussions, an animal-mind debate, a movie screening, and a final presentation. The course received positive feedback from all who participated. Although the once-a-week class period offered a manageable workload for the student-instructor, more frequent meetings would have strengthened the interaction with the material. With preparation, motivated students, and frequent feedback from a seasoned professional, a student-instructed course can be a rewarding experience for all involved.
RESUMO
The full neural circuits of conscious perception remain unknown. Using a visual perception task, we directly recorded a subcortical thalamic awareness potential (TAP). We also developed a unique paradigm to classify perceived versus not perceived stimuli using eye measurements to remove confounding signals related to reporting on conscious experiences. Using fMRI, we discovered three major brain networks driving conscious visual perception independent of report: first, increases in signal detection regions in visual, fusiform cortex, and frontal eye fields; and in arousal/salience networks involving midbrain, thalamus, nucleus accumbens, anterior cingulate, and anterior insula; second, increases in frontoparietal attention and executive control networks and in the cerebellum; finally, decreases in the default mode network. These results were largely maintained after excluding eye movement-based fMRI changes. Our findings provide evidence that the neurophysiology of consciousness is complex even without overt report, involving multiple cortical and subcortical networks overlapping in space and time.
Assuntos
Estado de Consciência , Movimentos Oculares , Humanos , Percepção Visual , Encéfalo , NeurofisiologiaRESUMO
Working memory is vital for basic functions in everyday life. During working memory, one holds a finite amount of information in mind until it is no longer required or when resources to maintain this information are depleted. Convergence of neuroimaging data indicates that working memory is supported by the motor system, and in particular, by regions that are involved in motor planning and preparation, in the absence of overt movement. These "secondary motor" regions are physically located between primary motor and non-motor regions, within the frontal lobe, cerebellum, and basal ganglia, creating a functionally organized gradient. The contribution of secondary motor regions to working memory may be to generate internal motor traces that reinforce the representation of information held in mind. The primary aim of this review is to elucidate motor-cognitive interactions through the lens of working memory using the Sternberg paradigm as a model and to suggest origins of the motor-cognitive interface. In addition, we discuss the implications of the motor-cognitive relationship for clinical groups with motor network deficits.
Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Motor/fisiologia , Transtornos dos Movimentos/fisiopatologia , Rede Nervosa/fisiologia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiopatologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Transtornos dos Movimentos/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologiaRESUMO
Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.
RESUMO
Working memory (WM) involves the ability to maintain and manipulate information held in mind. Neuroimaging studies have shown that secondary motor areas activate during WM for verbal content (e.g., words or letters), in the absence of primary motor area activation. This activation pattern may reflect an inner speech mechanism supporting online phonological rehearsal. Here, we examined the causal relationship between motor system activity and WM processing by using transcranial magnetic stimulation (TMS) to manipulate motor system activity during WM rehearsal. We tested WM performance for verbalizable (words and pseudowords) and non-verbalizable (Chinese characters) visual information. We predicted that disruption of motor circuits would specifically affect WM processing of verbalizable information. We found that TMS targeting motor cortex slowed response times (RTs) on verbal WM trials with high (pseudoword) vs. low (real word) phonological load. However, non-verbal WM trials were also significantly slowed with motor TMS. WM performance was unaffected by sham stimulation or TMS over visual cortex (VC). Self-reported use of motor strategy predicted the degree of motor stimulation disruption on WM performance. These results provide evidence of the motor system's contributions to verbal and non-verbal WM processing. We speculate that the motor system supports WM by creating motor traces consistent with the type of information being rehearsed during maintenance.