Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 20(1): 29, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859286

RESUMO

BACKGROUND: Aging degrades the balance and locomotion ability due to frailty and pathological conditions. This demands balance rehabilitation and assistive technologies that help the affected population to regain mobility, independence, and improve their quality of life. While many overground gait rehabilitation and assistive robots exist in the market, none are designed to be used at home or in community settings. METHODS: A device named Mobile Robotic Balance Assistant (MRBA) is developed to address this problem. MRBA is a hybrid of a gait assistive robot and a powered wheelchair. When the user is walking around performing activities of daily living, the robot follows the person and provides support at the pelvic area in case of loss of balance. It can also be transformed into a wheelchair if the user wants to sit down or commute. To achieve instability detection, sensory data from the robot are compared with a predefined threshold; a fall is identified if the value exceeds the threshold. The experiments involve both healthy young subjects and an individual with spinal cord injury (SCI). Spatial Parametric Mapping is used to assess the effect of the robot on lower limb joint kinematics during walking. The instability detection algorithm is evaluated by calculating the sensitivity and specificity in identifying normal walking and simulated falls. RESULTS: When walking with MRBA, the healthy subjects have a lower speed, smaller step length and longer step time. The SCI subject experiences similar changes as well as a decrease in step width that indicates better stability. Both groups of subjects have reduced joint range of motion. By comparing the force sensor measurement with a calibrated threshold, the instability detection algorithm can identify more than 93% of self-induced falls with a false alarm rate of 0%. CONCLUSIONS: While there is still room for improvement in the robot compliance and the instability identification, the study demonstrates the first step in bringing gait assistive technologies into homes. We hope that the robot can encourage the balance-impaired population to engage in more activities of daily living to improve their quality of life. Future research includes recruiting more subjects with balance difficulty to further refine the device functionalities.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Atividades Cotidianas , Qualidade de Vida , Marcha
2.
BMC Med Inform Decis Mak ; 22(1): 175, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35780122

RESUMO

BACKGROUND: Insightful feedback generation for daily home-based stroke rehabilitation is currently unavailable due to the inefficiency of exercise inspection done by therapists. We aim to produce a compact anomaly representation that allows a therapist to pay attention to only a few specific sections in a long exercise session record and boost their efficiency in feedback generation. METHODS: This study proposes a data-driven technique to model a repetitive exercise using unsupervised phase learning on an artificial neural network and statistical learning on principal component analysis (PCA). After a model is built on a set of normal healthy movements, the model can be used to extract a sequence of anomaly scores from a movement of the same prescription. RESULTS: The method not only works on a standard marker-based motion capture system but also performs well on a more compact and affordable motion capture system based-on Kinect V2 and wrist-worn inertial measurement units that can be used at home. An evaluation of four different exercises shows its potential in separating anomalous movements from normal ones with an average area under the curve (AUC) of 0.9872 even on the compact motion capture system. CONCLUSIONS: The proposed processing technique has the potential to help clinicians in providing high-quality feedback for telerehabilitation in a more scalable way.


Assuntos
Terapia por Exercício , Reabilitação do Acidente Vascular Cerebral , Exercício Físico , Terapia por Exercício/métodos , Humanos , Movimento , Extremidade Superior
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083090

RESUMO

To complement rehabilitation assessments that involve hand-object interaction with additional information on the grasping parameters, we sensorized an object with a pressure sensor array module that can generate a pressure distribution map. The module can be customized for cylindrical and cuboid objects with up to 1024 sensing elements and it supports the efficient transfer of data wirelessly at more than 30 Hz. Although the module uses inexpensive materials, it is sensitive to changes in pressure distribution. It can also depict the shape of various objects with reasonable details as shown in the small errors for object pose estimation and high accuracy scores for hand grasp classification. The module's modular design and wireless functionality help to simplify integration with existing objects to create a smart sensing surface.Clinical relevance The resulting pressure distribution map allows the therapist to analyze grasping parameters that cannot be determined from visual observations alone.


Assuntos
Força da Mão , Mãos
4.
PLoS One ; 17(8): e0270693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951544

RESUMO

Stroke-induced somatosensory impairments seem to be clinically overlooked, despite their prevalence and influence on motor recovery post-stroke. Interest in technology has been gaining traction over the past few decades as a promising method to facilitate stroke rehabilitation. This questionnaire-based cross-sectional study aimed to identify current clinical practice and perspectives on the management of somatosensory impairments post-stroke and the use of technology in assessing outcome measures and providing intervention. Participants were 132 physiotherapists and occupational therapists currently working with stroke patients in public hospitals and rehabilitation centres in Singapore. It was found that the majority (64.4%) of the therapists spent no more than half of the time per week on somatosensory interventions. Functional or task-specific training was the primary form of intervention applied to retrain somatosensory functions in stroke survivors. Standardised assessments (43.2%) were used less frequently than non-standardised assessments (97.7%) in clinical practice, with the sensory subscale of the Fugl-Meyer Assessment being the most popular outcome measure, followed by the Nottingham Sensory Assessment. While the adoption of technology for assessment was relatively scarce, most therapists (87.1%) reported that they have integrated technology into intervention. There was a common agreement that proprioception is an essential component in stroke rehabilitation, and that robotic technology combined with conventional therapy is effective in enhancing stroke rehabilitation, particularly for retraining proprioception. Most therapists identified price, technology usability, and lack of available space as some of the biggest barriers to integrating robotic technology in stroke rehabilitation. Standardised assessments and interventions targeting somatosensory functions should be more clearly delineated in clinical guidelines. Although therapists were positive about technology-based rehabilitation, obstacles that make technology integration challenging ought to be addressed.


Assuntos
Fisioterapeutas , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estudos Transversais , Humanos , Terapeutas Ocupacionais , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Tecnologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-35576429

RESUMO

Stroke can be a devastating condition that impairs the upper limb and reduces mobility. Wearable robots can aid impaired users by supporting performance of Activities of Daily Living (ADLs). In the past decade, soft devices have become popular due to their inherent malleable and low-weight properties that makes them generally safer and more ergonomic. In this study, we present an improved version of our previously developed gravity-compensating upper limb exosuit and introduce a novel hand exoskeleton. The latter uses 3D-printed structures that are attached to the back of the fingers which prevent undesired hyperextension of joints. We explored the feasibility of using this integrated system in a sample of 10 chronic stroke patients who performed 10 ADLs. We observed a significant reduction of 30.3 ± 3.5% (mean ± standard error), 31.2 ± 3.2% and 14.0 ± 5.1% in the mean muscular activity of the Biceps Brachii (BB), Anterior Deltoid (AD) and Extensor Digitorum Communis muscles, respectively. Additionally, we observed a reduction of 14.0 ± 11.5%, 14.7 ± 6.9% and 12.8 ± 4.4% in the coactivation of the pairs of muscles BB and Triceps Brachii (TB), BB and AD, and TB and Pectoralis Major (PM), respectively, typically associated to pathological muscular synergies, without significant degradation of healthy muscular coactivation. There was also a significant increase of elbow flexion angle ( 12.1±1.5° ). These results further cement the potential of using lightweight wearable devices to assist impaired users.


Assuntos
Robótica , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Eletromiografia , Estudos de Viabilidade , Humanos , Músculo Esquelético/fisiologia , Extremidade Superior
6.
Pilot Feasibility Stud ; 7(1): 207, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782024

RESUMO

BACKGROUND: Prior studies have established that senses of the limb position in space (proprioception and kinaesthesia) are important for motor control and learning. Although nearly one-half of stroke patients have impairment in the ability to sense their movements, somatosensory retraining focusing on proprioception and kinaesthesia is often overlooked. Interventions that simultaneously target motor and somatosensory components are thought to be useful for relearning somatosensory functions while increasing mobility of the affected limb. For over a decade, robotic technology has been incorporated in stroke rehabilitation for more controlled therapy intensity, duration, and frequency. This pilot randomised controlled trial introduces a compact robotic-based upper-limb reaching task that retrains proprioception and kinaesthesia concurrently. METHODS: Thirty first-ever chronic stroke survivors (> 6-month post-stroke) will be randomly assigned to either a treatment or a control group. Over a 5-week period, the treatment group will receive 15 training sessions for about an hour per session. Robot-generated haptic guidance will be provided along the movement path as somatosensory cues while moving. Audio-visual feedback will appear following every successful movement as a reward. For the same duration, the control group will complete similar robotic training but without the vision occluded and robot-generated cues. Baseline, post-day 1, and post-day 30 assessments will be performed, where the last two sessions will be conducted after the last training session. Robotic-based performance indices and clinical assessments of upper limb functions after stroke will be used to acquire primary and secondary outcome measures respectively. This work will provide insights into the feasibility of such robot-assisted training clinically. DISCUSSION: The current work presents a study protocol to retrain upper-limb somatosensory and motor functions using robot-based rehabilitation for community-dwelling stroke survivors. The training promotes active use of the affected arm while at the same time enhances somatosensory input through augmented feedback. The outcomes of this study will provide preliminary data and help inform the clinicians on the feasibility and practicality of the proposed exercise. TRIAL REGISTRATION: ClinicalTrials.gov NCT04490655 . Registered 29 July 2020.

7.
Front Robot AI ; 8: 612415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026855

RESUMO

Current neurorehabilitation models primarily rely on extended hospital stays and regular therapy sessions requiring close physical interactions between rehabilitation professionals and patients. The current COVID-19 pandemic has challenged this model, as strict physical distancing rules and a shift in the allocation of hospital resources resulted in many neurological patients not receiving essential therapy. Accordingly, a recent survey revealed that the majority of European healthcare professionals involved in stroke care are concerned that this lack of care will have a noticeable negative impact on functional outcomes. COVID-19 highlights an urgent need to rethink conventional neurorehabilitation and develop alternative approaches to provide high-quality therapy while minimizing hospital stays and visits. Technology-based solutions, such as, robotics bear high potential to enable such a paradigm shift. While robot-assisted therapy is already established in clinics, the future challenge is to enable physically assisted therapy and assessments in a minimally supervized and decentralized manner, ideally at the patient's home. Key enablers are new rehabilitation devices that are portable, scalable and equipped with clinical intelligence, remote monitoring and coaching capabilities. In this perspective article, we discuss clinical and technological requirements for the development and deployment of minimally supervized, robot-assisted neurorehabilitation technologies in patient's homes. We elaborate on key principles to ensure feasibility and acceptance, and on how artificial intelligence can be leveraged for embedding clinical knowledge for safe use and personalized therapy adaptation. Such new models are likely to impact neurorehabilitation beyond COVID-19, by providing broad access to sustained, high-quality and high-dose therapy maximizing long-term functional outcomes.

8.
Sci Data ; 7(1): 290, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901007

RESUMO

Assessment of human movement performance in activities of daily living (ADL) is a key component in clinical and rehabilitation settings. Motion capture technology is an effective method for objective assessment of human movement. Existing databases capture human movement and ADL performance primarily in the Western population, and there are no Asian databases to date. This is despite the fact that Asian anthropometrics influence movement kinematics and kinetics. This paper details the protocol in the first phase of the largest Asian normative human movement database. Data collection has commenced, and this paper reports 10 healthy participants. Twelve tasks were performed and data was collected using Qualisys motion capture system, force plates and instrumented table and chair. In phase two, human movement of individuals with stroke and knee osteoarthritis will be captured. This can have great potential for benchmarking with the normative human movement captured in phase one and predicting recovery and progression of movement for patients. With individualised progression, it will offer the development of personalised therapy protocols in rehabilitation.


Assuntos
Atividades Cotidianas , Movimento , Povo Asiático , Fenômenos Biomecânicos , Voluntários Saudáveis , Humanos , Osteoartrite do Joelho/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia
9.
IEEE Trans Biomed Eng ; 67(3): 786-795, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180829

RESUMO

OBJECTIVE: This single-arm multisite trial investigates the efficacy of the neurostyle brain exercise therapy towards enhanced recovery (nBETTER) system, an electroencephalogram (EEG)-based motor imagery brain-computer interface (MI-BCI) employing visual feedback for upper-limb stroke rehabilitation, and the presence of EEG correlates of mental fatigue during BCI usage. METHODS: A total of 13 recruited stroke patients underwent thrice-weekly nBETTER therapy coupled with standard arm therapy over six weeks. Upper-extremity Fugl-Meyer motor assessment (FMA) scores were measured at baseline (week 0), post-intervention (week 6), and follow-ups (weeks 12 and 24). In total, 11/13 patients (mean age 55.2 years old, mean post-stroke duration 333.7 days, mean baseline FMA 35.5) completed the study. RESULTS: Significant FMA gains relative to baseline were observed at weeks 6 and 24. Retrospectively comparing to the standard arm therapy (SAT) control group and BCI with haptic knob (BCI-HK) intervention group from a previous similar study, the SAT group had no significant gains, whereas the BCI-HK group had significant gains at weeks 6, 12, and 24. EEG analysis revealed significant positive correlations between relative beta power and BCI performance in the frontal and central brain regions, suggesting that mental fatigue may contribute to poorer BCI performance. CONCLUSION: nBETTER, an EEG-based MI-BCI employing only visual feedback, helps stroke survivors sustain short-term FMA improvement. Analysis of EEG relative beta power indicates that mental fatigue may be present. SIGNIFICANCE: This study adds nBETTER to the growing literature of safe and effective stroke rehabilitation MI-BCI, and suggests an additional fatigue-monitoring role in future such BCI.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Fadiga Mental/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Retroalimentação Sensorial/fisiologia , Humanos , Imaginação/fisiologia , Pessoa de Meia-Idade , Destreza Motora/fisiologia , Adulto Jovem
10.
Am J Phys Med Rehabil ; 96(10 Suppl 1): S150-S156, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28708632

RESUMO

In this article, we discuss robotic-assisted therapy as an emerging and significant field of clinical rehabilitation and its value proposition for innovating rehabilitation clinical practice. Attempts to achieve integration among clinicians' practices and bioengineers' machines often generate new challenges and controversies. To date, the literature is indicative of a sizeable number and variety of robotic devices in the field of clinical rehabilitation, some are commercially available; however, large-scale clinical outcomes are less positive than expected. The following main themes related to integrating rehabilitation technology in real-world clinical practice will be discussed: the application of current evidence-based practice and knowledge in relation to treatment in the rehabilitation clinic, perspectives from rehabilitation professionals using robotic-aided therapy with regard to challenges, and strategies for problem solving. Lastly, we present innovation philosophies with regard to sustainability of clinical rehabilitation technologies.


Assuntos
Prática Clínica Baseada em Evidências/tendências , Medicina Física e Reabilitação/tendências , Robótica/tendências , Bioengenharia/tendências , Previsões , Humanos , Medicina Física e Reabilitação/métodos , Robótica/métodos
11.
Neural Comput Appl ; 28(11): 3259-3272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051688

RESUMO

Motor imagery-based brain-computer interface (MI-BCI) has been proposed as a rehabilitation tool to facilitate motor recovery in stroke. However, the calibration of a BCI system is a time-consuming and fatiguing process for stroke patients, which leaves reduced time for actual therapeutic interaction. Studies have shown that passive movement (PM) (i.e., the execution of a movement by an external agency without any voluntary motions) and motor imagery (MI) (i.e., the mental rehearsal of a movement without any activation of the muscles) induce similar EEG patterns over the motor cortex. Since performing PM is less fatiguing for the patients, this paper investigates the effectiveness of calibrating MI-BCIs from PM for stroke subjects in terms of classification accuracy. For this purpose, a new adaptive algorithm called filter bank data space adaptation (FB-DSA) is proposed. The FB-DSA algorithm linearly transforms the band-pass-filtered MI data such that the distribution difference between the MI and PM data is minimized. The effectiveness of the proposed algorithm is evaluated by an offline study on data collected from 16 healthy subjects and 6 stroke patients. The results show that the proposed FB-DSA algorithm significantly improved the classification accuracies of the PM and MI calibrated models (p < 0.05). According to the obtained classification accuracies, the PM calibrated models that were adapted using the proposed FB-DSA algorithm outperformed the MI calibrated models by an average of 2.3 and 4.5 % for the healthy and stroke subjects respectively. In addition, our results suggest that the disparity between MI and PM could be stronger in the stroke patients compared to the healthy subjects, and there would be thus an increased need to use the proposed FB-DSA algorithm in BCI-based stroke rehabilitation calibrated from PM.

12.
Clin EEG Neurosci ; 46(4): 310-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24756025

RESUMO

Electroencephalography (EEG)-based motor imagery (MI) brain-computer interface (BCI) technology has the potential to restore motor function by inducing activity-dependent brain plasticity. The purpose of this study was to investigate the efficacy of an EEG-based MI BCI system coupled with MIT-Manus shoulder-elbow robotic feedback (BCI-Manus) for subjects with chronic stroke with upper-limb hemiparesis. In this single-blind, randomized trial, 26 hemiplegic subjects (Fugl-Meyer Assessment of Motor Recovery After Stroke [FMMA] score, 4-40; 16 men; mean age, 51.4 years; mean stroke duration, 297.4 days), prescreened with the ability to use the MI BCI, were randomly allocated to BCI-Manus or Manus therapy, lasting 18 hours over 4 weeks. Efficacy was measured using upper-extremity FMMA scores at weeks 0, 2, 4 and 12. ElEG data from subjects allocated to BCI-Manus were quantified using the revised brain symmetry index (rBSI) and analyzed for correlation with the improvements in FMMA score. Eleven and 15 subjects underwent BCI-Manus and Manus therapy, respectively. One subject in the Manus group dropped out. Mean total FMMA scores at weeks 0, 2, 4, and 12 weeks improved for both groups: 26.3±10.3, 27.4±12.0, 30.8±13.8, and 31.5±13.5 for BCI-Manus and 26.6±18.9, 29.9±20.6, 32.9±21.4, and 33.9±20.2 for Manus, with no intergroup differences (P=.51). More subjects attained further gains in FMMA scores at week 12 from BCI-Manus (7 of 11 [63.6%]) than Manus (5 of 14 [35.7%]). A negative correlation was found between the rBSI and FMMA score improvement (P=.044). BCI-Manus therapy was well tolerated and not associated with adverse events. In conclusion, BCI-Manus therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. Motor gains were comparable to those attained with intensive robotic therapy (1,040 repetitions/session) despite reduced arm exercise repetitions using EEG-based MI-triggered robotic feedback (136 repetitions/session). The correlation of rBSI with motor improvements suggests that the rBSI can be used as a prognostic measure for BCI-based stroke rehabilitation.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imagens, Psicoterapia , Robótica , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modalidades de Fisioterapia , Recuperação de Função Fisiológica , Resultado do Tratamento , Extremidade Superior
13.
Front Neuroeng ; 7: 30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120465

RESUMO

The objective of this study was to investigate the efficacy of an Electroencephalography (EEG)-based Motor Imagery (MI) Brain-Computer Interface (BCI) coupled with a Haptic Knob (HK) robot for arm rehabilitation in stroke patients. In this three-arm, single-blind, randomized controlled trial; 21 chronic hemiplegic stroke patients (Fugl-Meyer Motor Assessment (FMMA) score 10-50), recruited after pre-screening for MI BCI ability, were randomly allocated to BCI-HK, HK or Standard Arm Therapy (SAT) groups. All groups received 18 sessions of intervention over 6 weeks, 3 sessions per week, 90 min per session. The BCI-HK group received 1 h of BCI coupled with HK intervention, and the HK group received 1 h of HK intervention per session. Both BCI-HK and HK groups received 120 trials of robot-assisted hand grasping and knob manipulation followed by 30 min of therapist-assisted arm mobilization. The SAT group received 1.5 h of therapist-assisted arm mobilization and forearm pronation-supination movements incorporating wrist control and grasp-release functions. In all, 14 males, 7 females, mean age 54.2 years, mean stroke duration 385.1 days, with baseline FMMA score 27.0 were recruited. The primary outcome measure was upper extremity FMMA scores measured mid-intervention at week 3, end-intervention at week 6, and follow-up at weeks 12 and 24. Seven, 8 and 7 subjects underwent BCI-HK, HK and SAT interventions respectively. FMMA score improved in all groups, but no intergroup differences were found at any time points. Significantly larger motor gains were observed in the BCI-HK group compared to the SAT group at weeks 3, 12, and 24, but motor gains in the HK group did not differ from the SAT group at any time point. In conclusion, BCI-HK is effective, safe, and may have the potential for enhancing motor recovery in chronic stroke when combined with therapist-assisted arm mobilization.

14.
Neurorehabil Neural Repair ; 27(1): 53-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22645108

RESUMO

BACKGROUND: Robot-assisted training may improve motor function in some hemiparetic patients after stroke, but no physiological predictor of rehabilitation progress is reliable. Resting state functional magnetic resonance imaging (RS-fMRI) may serve as a method to assess and predict changes in the motor network. OBJECTIVE: The authors examined the effects of upper-extremity robot-assisted rehabilitation (MANUS) versus an electroencephalography-based brain computer interface setup with motor imagery (MI EEG-BCI) and compared pretreatment and posttreatment RS-fMRI. METHODS: In all, 9 adults with upper-extremity paresis were trained for 4 weeks with a MANUS shoulder-elbow robotic rehabilitation paradigm. In 3 participants, robot-assisted movement began if no voluntary movement was initiated within 2 s. In 6 participants, MI-BCI-based movement was initiated if motor imagery was detected. RS-fMRI and Fugl-Meyer (FM) upper-extremity motor score were assessed before and after training. RESULTS: . The individual gain in FM scores over 12 weeks could be predicted from functional connectivity changes (FCCs) based on the pre-post differences in RS-fMRI measurements. Both the FM gain and FCC were numerically higher in the MI-BCI group. Increases in FC of the supplementary motor area, the contralesional and ipsilesional motor cortex, and parts of the visuospatial system with mostly association cortex regions and the cerebellum correlated with individual upper-extremity function improvement. CONCLUSION: FCC may predict the steepness of individual motor gains. Future training could therefore focus on directly inducing these beneficial increases in FC. Evaluation of the treatment groups suggests that MI is a potential facilitator of such neuroplasticity.


Assuntos
Interfaces Cérebro-Computador , Imagens, Psicoterapia/métodos , Recuperação de Função Fisiológica/fisiologia , Descanso , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral , Extremidade Superior/fisiopatologia , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio , Análise de Componente Principal , Acidente Vascular Cerebral/patologia , Tomografia Computadorizada por Raios X , Adulto Jovem
15.
Clin EEG Neurosci ; 42(4): 253-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22208123

RESUMO

Brain-computer interface (BCI) technology has the prospects of helping stroke survivors by enabling the interaction with their environ ment through brain signals rather than through muscles, and restoring motor function by inducing activity-dependent brain plasticity. This paper presents a clinical study on the extent of detectable brain signals from a large population of stroke patients in using EEG-based motor imagery BCI. EEG data were collected from 54 stroke patients whereby finger tapping and motor imagery of the stroke-affected hand were performed by 8 and 46 patients, respectively. EEG data from 11 patients who gave further consent to perform motor imagery were also collected for second calibration and third independent test sessions conducted on separate days. Off-line accuracies of classifying the two classes of EEG from finger tapping or motor imagery of the stroke-affected hand versus the EEG from background rest were then assessed and compared to 16 healthy subjects. The mean off-line accuracy of detecting motor imagery by the 46 patients (mu=0.74) was significantly lower than finger tapping by 8 patients (mu=0.87, p=0.008), but not significantly lower than motor imagery by healthy subjects (mu=0.78, p=0.23). Six stroke patients performed motor imagery at chance level, and no correlation was found between the accuracies of detecting motor imagery and their motor impairment in terms of Fugl-Meyer Assessment (p=0.29). The off-line accuracies of the 11 patients in the second session (mu=0.76) were not significantly different from the first session (mu=0.72, p=0.16), or from the on-line accuracies of the third independent test session (mu=0.82, p=0.14). Hence this study showed that the majority of stroke patients could use EEG-based motor imagery BCI.


Assuntos
Eletroencefalografia/métodos , Imaginação/fisiologia , Sistemas Homem-Máquina , Reabilitação do Acidente Vascular Cerebral , Interface Usuário-Computador , Adolescente , Adulto , Idoso , Algoritmos , Estudos de Casos e Controles , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Análise e Desempenho de Tarefas
16.
J Rehabil Med ; 42(5): 437-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20544153

RESUMO

BACKGROUND: Commercial off-the-shelf computer gaming devices have been making inroads into the rehabilitation arena, with the objective of making therapeutic exercise fun and contextual. One such device is the Nintendo Wii. Published clinical studies evaluating its acceptance, potential benefits and side-effects in the rehabilitation of patients with post-stroke weakness are few in number. OBJECTIVE: The aim of this study is to assess the feasibility of using the Nintendo Wii as an adjunct to conventional rehabilitation of patients with post-stroke upper limb weakness. METHODS: Twenty rehabilitation inpatients within 3 months after a stroke with upper limb weakness received 6 sessions of upper limb exercises via a Nintendo Wii over 2 weeks in addition to conventional rehabilitation. Outcome measures include a questionnaire, Fugl-Meyer Assessment of Upper Limb Motor Function and visual analogue scale of upper limb pain. RESULTS: A total of 16 subjects completed the study. All 16 found Nintendo Wii gaming enjoyable and comparable to, if not better than, conventional therapy. There were small but statistically significant improvements in the Fugl-Meyer Assessment and Motricity Index scores. CONCLUSION: Nintendo Wii appears to be a feasible adjunctive device to augment conventional therapy in a cohort of subacute stroke patients with moderate impairments of upper limb strength and function.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Extremidade Superior/fisiopatologia , Interface Usuário-Computador , Jogos de Vídeo , Atividades Cotidianas , Idoso , Exercício Físico/fisiologia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/fisiopatologia , Debilidade Muscular/reabilitação , Avaliação de Resultados em Cuidados de Saúde , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Inquéritos e Questionários
17.
Artigo em Inglês | MEDLINE | ID: mdl-19163633

RESUMO

This clinical study investigates whether the performance of hemiparetic stroke patients operating a non-invasive Motor Imagery-based Brain-Computer Interface (MI-BCI) is comparable to healthy subjects. The study is performed on 8 healthy subjects and 35 BCI-naïve hemiparetic stroke patients. This study also investigates whether the performance of the stroke patients in operating MI-BCI correlates with the extent of neurological disability. The performance is objectively computed from the 10 x 10-fold cross-validation accuracy of employing the Filter Bank Common Spatial Pattern (FBCSP) algorithm on their EEG measurements. The neurological disability is subjectively estimated using the Fugl-Meyer Assessment (FMA) of the upper extremity. The results show that the performance of BCI-naïve hemiparetic stroke patients is comparable to healthy subjects, and no correlation is found between the accuracy of their performance and their motor impairment in terms of FMA.


Assuntos
Encéfalo/fisiologia , Movimento/fisiologia , Reabilitação do Acidente Vascular Cerebral , Algoritmos , Inteligência Artificial , Estudos de Casos e Controles , Potenciais Evocados/fisiologia , Humanos , Imaginação/fisiologia , Doenças do Sistema Nervoso/reabilitação , Paresia/reabilitação , Reprodutibilidade dos Testes , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA