Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 51(6): 2641-2654, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36864547

RESUMO

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.


Assuntos
Cromátides , Hordeum , Metáfase , Cromátides/química , Cromatina/genética , Cromossomos , Microscopia , Troca de Cromátide Irmã , Cromossomos de Plantas , Hordeum/citologia
2.
Plant J ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840457

RESUMO

Efficient chromatin condensation is required to transport chromosomes during mitosis and meiosis, forming daughter cells. While it is well accepted that these processes follow fundamental rules, there has been a controversial debate for more than 140 years on whether the higher-order chromatin organization in chromosomes is evolutionarily conserved. Here, we summarize historical and recent investigations based on classical and modern methods. In particular, classical light microscopy observations based on living, fixed, and treated chromosomes covering a wide range of plant and animal species, and even in single-cell eukaryotes suggest that the chromatids of large chromosomes are formed by a coiled chromatin thread, named the chromonema. More recently, these findings were confirmed by electron and super-resolution microscopy, oligo-FISH, molecular interaction data, and polymer simulation. Altogether, we describe common and divergent features of coiled chromonemata in different species. We hypothesize that chromonema coiling in large chromosomes is a fundamental feature established early during the evolution of eukaryotes to handle increasing genome sizes.

3.
Chromosoma ; 132(1): 19-29, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719450

RESUMO

Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination, respectively. Consequently, they are required for proper chromosome segregation during cell divisions. We combined two super-resolution techniques, structured illumination microscopy (SIM) to co-localize Topo IIα and CENH3, and photoactivated localization microscopy (PALM) to determine their molecule numbers in barley metaphase chromosomes. We detected a dispersed Topo IIα distribution along chromosome arms but an accumulation at centromeres, telomeres, and nucleolus-organizing regions. With a precision of 10-50 nm, we counted ~ 20,000-40,000 Topo IIα molecules per chromosome, 28% of them within the (peri)centromere. With similar precision, we identified ~13,500 CENH3 molecules per centromere where Topo IIα proteins and CENH3-containing chromatin intermingle. In short, we demonstrate PALM as a useful method to count and localize single molecules with high precision within chromosomes. The ultrastructural distribution and the detected amount of Topo IIα and CENH3 are instrumental for a better understanding of their functions during chromatin condensation and centromere determination.


Assuntos
Hordeum , Hordeum/genética , Metáfase , Microscopia , Centrômero , Cromatina/genética
4.
Chromosoma ; 130(1): 15-25, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33443586

RESUMO

Duckweeds represent a small, free-floating aquatic family (Lemnaceae) of the monocot order Alismatales with the fastest growth rate among flowering plants. They comprise five genera (Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia) varying in genome size and chromosome number. Spirodela polyrhiza had the first sequenced duckweed genome. Cytogenetic maps are available for both species of the genus Spirodela (S. polyrhiza and S. intermedia). However, elucidation of chromosome homeology and evolutionary chromosome rearrangements by cross-FISH using Spirodela BAC probes to species of other duckweed genera has not been successful so far. We investigated the potential of chromosome-specific oligo-FISH probes to address these topics. We designed oligo-FISH probes specific for one S. intermedia and one S. polyrhiza chromosome (Fig. 1a). Our results show that these oligo-probes cross-hybridize with the homeologous regions of the other congeneric species, but are not suitable to uncover chromosomal homeology across duckweeds genera. This is most likely due to too low sequence similarity between the investigated genera and/or too low probe density on the target genomes. Finally, we suggest genus-specific design of oligo-probes to elucidate chromosome evolution across duckweed genera.


Assuntos
Araceae/genética , Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/química , Araceae/classificação , Araceae/crescimento & desenvolvimento , Cariotipagem , Sondas de Oligonucleotídeos/genética , Filogenia , Especificidade da Espécie
5.
J Biochem Mol Toxicol ; 36(3): e22975, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34964203

RESUMO

Imine resveratrol analogs (IRAs) are promising new agents that can have higher positive effects and, simultaneously, lower negative properties than resveratrol. In this study, three imine hydroxy derivatives (2-((4-hydroxyphenylimino) methyl) phenol [IRA1], 3-((4-hydroxyphenylimino) methyl) phenol [IRA2], and 4-((4-hydroxyphenylimino) methyl) phenol [IRA3]) were prepared and tested in several biological assays. They performed superior to resveratrol in several antioxidant and biological assays, showing high antioxidant capacity and low genotoxicity. Ferric reducing antioxidant power assay (FRAP) and hydroxyl radicals scavenging assay revealed good Fe3+ to Fe2+ reduction and strong inhibition of hydroxyl radical formation, respectively. High dosage (1 mmol/dm3 ) of IRA2 and IRA3 did not cause genotoxicity in human lymphocytes. Moreover, lymphocytes pretreated with all three IRAs accumulated only very few DNA breaks induced by H2 O2 than lymphocytes pretreated with resveratrol. Additionally, the number of detected DNA breaks appearing after removal of damaged DNA bases, 8-oxo-7,8-dihydroguanine (8-oxoG), did not dramatically increase in lymphocytes treated with IRA2. Thus, we concluded that IRAs, especially IRA2, are strong antioxidants with the ability to protect lymphocytes from oxidative damage.


Assuntos
Antioxidantes , Linfócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Resveratrol , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Resveratrol/análogos & derivados , Resveratrol/síntese química , Resveratrol/química , Resveratrol/farmacologia
6.
Chromosome Res ; 28(3-4): 355-368, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32939606

RESUMO

Expansion microscopy (ExM) is a method to magnify physically a specimen with preserved ultrastructure. It has the potential to explore structural features beyond the diffraction limit of light. The procedure has been successfully used for different animal species, from isolated macromolecular complexes through cells to tissue slices. Expansion of plant-derived samples is still at the beginning, and little is known, whether the chromatin ultrastructure becomes altered by physical expansion. In this study, we expanded isolated barley nuclei and compared whether ExM can provide a structural view of chromatin comparable with super-resolution microscopy. Different fixation and denaturation/digestion conditions were tested to maintain the chromatin ultrastructure. We achieved up to ~4.2-times physically expanded nuclei corresponding to a maximal resolution of ~50-60 nm when imaged by wild-field (WF) microscopy. By applying structured illumination microscopy (SIM, super-resolution) doubling the WF resolution, the chromatin structures were observed at a resolution of ~25-35 nm. WF microscopy showed a preserved nucleus shape and nucleoli. Moreover, we were able to detect chromatin domains, invisible in unexpanded nuclei. However, by applying SIM, we observed that the preservation of the chromatin ultrastructure after the expansion was not complete and that the majority of the tested conditions failed to keep the ultrastructure. Nevertheless, using expanded nuclei, we localized successfully centromere repeats by fluorescence in situ hybridization (FISH) and the centromere-specific histone H3 variant CENH3 by indirect immunolabelling. However, although these repeats and proteins were localized at the correct position within the nuclei (indicating a Rabl orientation), their ultrastructural arrangement was impaired.


Assuntos
Cromatina/ultraestrutura , Microscopia/métodos , Núcleo Celular/ultraestrutura , Imunofluorescência , Hordeum/genética , Hibridização in Situ Fluorescente , Microscopia/normas
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638958

RESUMO

The development of above-ground lateral organs is initiated at the peripheral zone of the shoot apical meristem (SAM). The coordination of cell fate determination and the maintenance of stem cells are achieved through a complex regulatory network comprised of transcription factors. Two AP2/ERF transcription factor family genes, ESR1/DRN and ESR2/DRNL/SOB/BOL, regulate cotyledon and flower formation and de novo organogenesis in tissue culture. However, their roles in post-embryonic lateral organ development remain elusive. In this study, we analyzed the genetic interactions among SAM-related genes, WUS and STM, two ESR genes, and one of the HD-ZIP III members, REV, whose protein product interacts with ESR1 in planta. We found that esr1 mutations substantially enhanced the wus and stm phenotypes, which bear a striking resemblance to those of the wus rev and stm rev double mutants, respectively. Aberrant adaxial-abaxial polarity is observed in wus esr1 at relatively low penetrance. On the contrary, the esr2 mutation partially suppressed stm phenotypes in the later vegetative phase. Such complex genetic interactions appear to be attributed to the distinct expression pattern of two ESR genes because the ESR1 promoter-driving ESR2 is capable of rescuing phenotypes caused by the esr1 mutation. Our results pose the unique genetic relevance of ESR1 and the SAM-related gene interactions in the development of rosette leaves.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Homeodomínio/genética , Meristema/crescimento & desenvolvimento , Meristema/genética , Organogênese Vegetal/genética , Fatores de Transcrição/genética , Mutação , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
8.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672992

RESUMO

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200-250 nm laterally, ~500-700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4',6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.


Assuntos
Cromossomos de Plantas/genética , Hordeum/genética , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Cromossomos de Plantas/química , Cromossomos de Plantas/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Corantes Fluorescentes/química , Hordeum/citologia , Indóis/química , Metáfase/genética , Reprodutibilidade dos Testes
9.
Nucleus ; 13(1): 277-299, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36447428

RESUMO

Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.


Assuntos
Núcleo Celular , Cromatina , Humanos , Fluxo de Trabalho , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Proteínas de Fluorescência Verde
10.
Methods Cell Biol ; 161: 197-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33478690

RESUMO

The resolution achieved by conventional light microscopy is limited by light diffraction. This obstacle can be overcome either by optical super-resolution techniques or by the recently developed method to physically expand specimens, called expansion microscopy (ExM). The method utilizes polymer chemistry and the ability of a swellable polyelectrolyte hydrogel to absorb water, and thus to expand its size. The procedure was successfully applied to different species and tissue samples, mostly from the animal kingdom. Physically expanded nuclei and chromosomes in combination with specific protein labeling and super-resolution microscopy may provide new insight into the ultrastructure, dynamics, and function of plant chromatin. Here we provide a detailed protocol to expand isolated plant nuclei and visualize proteins by indirect immunolabeling. With the focus on chromatin structure, we expanded isolated barley nuclei from root tips and visualized the centromere-specific histone H3 variant CENH3. The achieved physical expansion of ~4.2 times allowed the detection of DAPI-labeled chromatin structures already by conventional wild-field (WF) microscopy with a maximal resolution of ~50-60nm. By applying structured illumination microscopy (SIM), doubling the WF resolution, chromatin structures at a resolution of ~25-35nm were observed. However, a certain distortion of the centromeric chromatin ultrastructure became obvious.


Assuntos
Núcleo Celular , Centrômero , Cromatina , Plantas , Histonas/genética , Microscopia
11.
Front Plant Sci ; 12: 641257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854521

RESUMO

Among the major phytohormones, the cytokinin exhibits unique features for its ability to positively affect the developmental status of plastids. Even early on in its research, cytokinins were known to promote plastid differentiation and to reduce the loss of chlorophyll in detached leaves. Since the discovery of the components of cytokinin perception and primary signaling, the genes involved in photosynthesis and plastid differentiation have been identified as those directly targeted by type-B response regulators. Furthermore, cytokinins are known to modulate versatile cellular processes such as promoting the division and differentiation of cells and, in concert with auxin, initiating the de novo formation of shoot apical meristem (SAM) in tissue cultures. Yet how cytokinins precisely participate in such diverse cellular phenomena, and how the associated cellular processes are coordinated as a whole, remains unclear. A plausible presumption that would account for the coordinated gene expression is the tight and reciprocal communication between the nucleus and plastid. The fact that cytokinins affect plastid developmental status via gene expression in both the nucleus and plastid is interpreted here to suggest that cytokinin functions as an initiator of anterograde (nucleus-to-plastid) signaling. Based on this viewpoint, we first summarize the physiological relevance of cytokinins to the coordination of plastid differentiation with de novo shoot organogenesis in tissue culture systems. Next, the role of endogenous cytokinins in influencing plastid differentiation within the SAM of intact plants is discussed. Finally, a presumed plastid-derived signal in response to cytokinins for coupled nuclear gene expression is proposed.

12.
Comput Struct Biotechnol J ; 18: 1311-1319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612754

RESUMO

Research on the formation of mitotic chromosomes from interphase chromatin domains, ongoing for several decades, made significant progress in recent years. It was stimulated by the development of advanced microscopic techniques and implementation of chromatin conformation capture methods that provide new insights into chromosome ultrastructure. This review aims to summarize and compare several models of chromatin fiber folding to form mitotic chromosomes and discusses them in the light of the novel findings. Functional genomics studies in several organisms confirmed condensins and cohesins as the major players in chromosome condensation. Here we compare available data on the role of these proteins across lower and higher eukaryotes and point to differences indicating evolutionary different pathways to shape mitotic chromosomes. Moreover, we discuss a controversial phenomenon of the mitotic chromosome ultrastructure - chromosome cavities - and using our super-resolution microscopy data, we contribute to its elucidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA