Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 577(7790): 355-358, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942052

RESUMO

Template-directed assembly has been shown to yield a broad diversity of highly ordered mesostructures1,2, which in a few cases exhibit symmetries not present in the native material3-5. However, this technique has not yet been applied to eutectic materials, which underpin many modern technologies ranging from high-performance turbine blades to solder alloys. Here we use directional solidification of a simple AgCl-KCl lamellar eutectic material within a pillar template to show that interactions of the material with the template lead to the emergence of a set of microstructures that are distinct from the eutectic's native lamellar structure and the template's hexagonal lattice structure. By modifying the solidification rate of this material-template system, trefoil, quatrefoil, cinquefoil and hexafoil mesostructures with submicrometre-size features are realized. Phase-field simulations suggest that these mesostructures appear owing to constraints imposed on diffusion by the hexagonally arrayed pillar template. We note that the trefoil and hexafoil patterns resemble Archimedean honeycomb and square-hexagonal-dodecagonal lattices6, respectively. We also find that by using monolayer colloidal crystals as templates, a variety of eutectic mesostructures including trefoil and hexafoil are observed, the former resembling the Archimedean kagome lattice. Potential emerging applications for the structures provided by templated eutectics include non-reciprocal metasurfaces7, magnetic spin-ice systems8,9, and micro- and nano-lattices with enhanced mechanical properties10,11.

2.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039708

RESUMO

We introduce an intermediate-temperature (350 °C) dry molten sodium hydroxide-mediated binder-free electrodeposition process to grow the previously electrochemically inaccessible air- and moisture-sensitive layered sodium transition metal oxides, NaxMO2 (M = Co, Mn, Ni, Fe), in both thin and thick film form, compounds which are conventionally synthesized in powder form by solid-state reactions at temperatures ≥700 °C. As a key motivation for this work, several of these oxides are of interest as cathode materials for emerging sodium-ion-based electrochemical energy storage systems. Despite the low synthesis temperature and short reaction times, our electrodeposited oxides retain the key structural and electrochemical performance observed in high-temperature bulk synthesized materials. We demonstrate that tens of micrometers thick >75% dense NaxCoO2 and NaxMnO2 can be deposited in under 1 h. When used as cathodes for sodium-ion batteries, these materials exhibit near theoretical gravimetric capacities, chemical diffusion coefficients of Na+ ions (∼10-12 cm2⋅s-1), and high reversible areal capacities in the range ∼0.25 to 0.76 mA⋅h⋅cm-2, values significantly higher than those reported for binder-free sodium cathodes deposited by other techniques. The method described here resolves longstanding intrinsic challenges associated with traditional aqueous solution-based electrodeposition of ceramic oxides and opens a general solution chemistry approach for electrochemical processing of hitherto unexplored air- and moisture-sensitive high valent multinary structures with extended frameworks.

3.
Small ; 19(41): e2300978, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37317008

RESUMO

Diagnosis of inflammatory diseases is characterized by identifying symptoms, biomarkers, and imaging. However, conventional techniques lack the sensitivities and specificities to detect disease early. Here, it is demonstrated that the detection of macrophage phenotypes, from inflammatory M1 to alternatively activated M2 macrophages, corresponding to the disease state can be used to predict the prognosis of various diseases. Activatable nanoreporters that can longitudinally detect the presence of the enzyme Arginase 1, a hallmark of M2 macrophages, and nitric oxide, a hallmark of M1 macrophages are engineered, in real-time. Specifically, an M2 nanoreporter enables the early imaging of the progression of breast cancer as predicted by selectively detecting M2 macrophages in tumors. The M1 nanoreporter enables real-time imaging of the subcutaneous inflammatory response that rises from a local lipopolysccharide (LPS) administration. Finally, the M1-M2 dual nanoreporter is evaluated in a muscle injury model, where an initial inflammatory response is monitored by imaging M1 macrophages at the site of inflammation, followed by a resolution phase monitored by the imaging of infiltrated M2 macrophages involved in matrix regeneration and wound healing. It is anticipated that this set of macrophage nanoreporters may be utilized for early diagnosis and longitudinal monitoring of inflammatory responses in various disease models.


Assuntos
Citocinas , Macrófagos , Humanos , Inflamação , Fenótipo , Progressão da Doença
4.
Bioconjug Chem ; 34(10): 1766-1779, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37707953

RESUMO

The interaction between lipid nanoparticles (LNPs) and serum proteins, giving rise to a unique identification in the form of the protein corona, has been shown to be associated with novel recognition by cell receptors. The presence of the corona enveloping the nanoparticle strongly affects the interplay with immune cells. The immune responses mediated by protein corona can affect nanoparticle toxicity and targeting capabilities. But the intracellular signaling of LNPs after corona formation resulting in the change of nanoparticles' ability to provoke immune responses remains unclear. Therefore, a more systematic and delineated approach must be considered to present the correlation between corona complexes and the shift in nanoparticle immunogenicity. Here, we studied and reported the inhibiting effect of the absorbed proteins on the LNPs on the NLRP3 inflammasome activation, a key intracellular protein complex that modulates several inflammatory responses. Ionizable lipid as a component of LNP was observed to play an important role in modulating the activation of NLRP3 inflammasome in serum-free conditions. However, in the presence of serum proteins, the corona layer on LNPs caused a significant reduction in the inflammasome activation. Reduction in the lysosomal rupture after treatment with corona-LNPs significantly reduced inflammasome activation. Furthermore, a strong reduction of cellular uptake in macrophages after the corona formation was observed. On inspecting the uptake mechanisms in macrophages using transport inhibitors, lipid formulation was found to play a critical role in determining the endocytic pathways for the LNPs in macrophages. This study highlights the need to critically analyze the protein interactions with nanomaterials and their concomitant adaptability with immune cells to evaluate nano-bio surfaces and successfully design nanomaterials for biological applications.


Assuntos
Nanopartículas , Coroa de Proteína , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Coroa de Proteína/metabolismo , Proteínas Sanguíneas , Lipídeos
5.
Nanotechnology ; 33(29)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35358955

RESUMO

The nanophotonic engineering of light-matter interactions has profoundly changed research behind the design and fabrication of optical materials and devices. Metasurfaces-arrays of subwavelength nanostructures that interact resonantly with electromagnetic radiation-have emerged as an integral nanophotonic platform for a new generation of ultrathin lenses, displays, polarizers and other devices. Their success hinges on advances in lithography and nanofabrication in recent decades. While existing nanolithography techniques are suitable for basic research and prototyping, issues of cost, throughput, scalability, and substrate compatibility may preclude their use for many metasurface applications. Patterning via spontaneous self-assembly of block copolymer thin films offers an enticing alternative for nanophotonic manufacturing that is rapid, inexpensive, and applicable to large areas and diverse substrates. This review discusses the advantages and disadvantages of block copolymer-based nanopatterning and highlights recent progress in their use for broadband antireflection, surface enhanced Raman spectroscopy, and other nanophotonic applications. Recent advances in diversification of self-assembled block copolymer nanopatterns and improved processes for enhanced scalability of self-assembled nanopatterning using block copolymers are also discussed, with a spotlight on directions for future research that would enable a wider array of nanophotonic applications.

6.
Chem Rev ; 119(5): 3036-3103, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30821144

RESUMO

The photovoltaics of organic-inorganic lead halide perovskite materials have shown rapid improvements in solar cell performance, surpassing the top efficiency of semiconductor compounds such as CdTe and CIGS (copper indium gallium selenide) used in solar cells in just about a decade. Perovskite preparation via simple and inexpensive solution processes demonstrates the immense potential of this thin-film solar cell technology to become a low-cost alternative to the presently commercially available photovoltaic technologies. Significant developments in almost all aspects of perovskite solar cells and discoveries of some fascinating properties of such hybrid perovskites have been made recently. This Review describes the fundamentals, recent research progress, present status, and our views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices. Strategies and challenges regarding compositional engineering of the hybrid perovskite structure are discussed, including potentials for developing all-inorganic and lead-free perovskite materials. Looking at the latest cutting-edge research, the prospects for perovskite-based photovoltaic and optoelectronic devices, including non-photovoltaic applications such as X-ray detectors and image sensing devices in industrialization, are described. In addition to the aforementioned major topics, we also review, as a background, our encounter with perovskite materials for the first solar cell application, which should inspire young researchers in chemistry and physics to identify and work on challenging interdisciplinary research problems through exchanges between academia and industry.

7.
Proc Natl Acad Sci U S A ; 114(45): E9455-E9464, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078394

RESUMO

Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl-KCl eutectics and of atomic layers of WSe2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives.


Assuntos
Nanoestruturas/química , Alicerces Teciduais/química , Animais , Gânglios Espinais/citologia , Masculino , Rede Nervosa/citologia , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Temperatura , Engenharia Tecidual/métodos
8.
Proc Natl Acad Sci U S A ; 113(15): E2104-13, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27036008

RESUMO

The ability to monitor the efficacy of an anticancer treatment in real time can have a critical effect on the outcome. Currently, clinical readouts of efficacy rely on indirect or anatomic measurements, which occur over prolonged time scales postchemotherapy or postimmunotherapy and may not be concordant with the actual effect. Here we describe the biology-inspired engineering of a simple 2-in-1 reporter nanoparticle that not only delivers a cytotoxic or an immunotherapy payload to the tumor but also reports back on the efficacy in real time. The reporter nanoparticles are engineered from a novel two-staged stimuli-responsive polymeric material with an optimal ratio of an enzyme-cleavable drug or immunotherapy (effector elements) and a drug function-activatable reporter element. The spatiotemporally constrained delivery of the effector and the reporter elements in a single nanoparticle produces maximum signal enhancement due to the availability of the reporter element in the same cell as the drug, thereby effectively capturing the temporal apoptosis process. Using chemotherapy-sensitive and chemotherapy-resistant tumors in vivo, we show that the reporter nanoparticles can provide a real-time noninvasive readout of tumor response to chemotherapy. The reporter nanoparticle can also monitor the efficacy of immune checkpoint inhibition in melanoma. The self-reporting capability, for the first time to our knowledge, captures an anticancer nanoparticle in action in vivo.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Monitoramento de Medicamentos/métodos , Monitorização Imunológica/métodos , Nanopartículas/administração & dosagem , Neoplasias/diagnóstico por imagem , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Antígeno B7-H1/imunologia , Caspase 3/química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Esterases/química , Esterases/metabolismo , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/uso terapêutico , Polímeros/administração & dosagem , Polímeros/química , Polímeros/uso terapêutico , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos
9.
Nanomedicine ; 12(7): 1853-1861, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27084552

RESUMO

c-Met pathway is implicated in the resistance to anti-VEGF therapy in renal cell carcinoma (RCC). However, clinical translation of therapies targeting these pathways has been limited due to dose-limiting toxicities, feedback signaling, and low intratumoral drug accumulation. Here, we developed liposomes encapsulating a multi-receptor tyrosine kinase inhibitor (XL184) to explore the possibility of improving intratumoral concentration, enhancing antitumor efficacy and reducing toxicities. The liposomes showed increased cytotoxicity than XL184, and resulted in a sustained inhibition of phosphorylation of Met, AKT and MAPK pathways in RCC cells. In a RCC tumor xenograft model, the liposomes induced sustained inhibition of tumor growth as compared to XL184, consistent with higher inhibition of kinase signaling pathways. Biodistribution studies revealed higher accumulation of the liposomes in tumor, which translated into lower toxicities. This study shows the use of liposomes for effective inhibition of multi-kinase pathways, which can potentially emerge as a new treatment for RCC.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Renais/tratamento farmacológico , Lipossomos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Distribuição Tecidual , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
10.
Proc Natl Acad Sci U S A ; 109(28): 11294-9, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733767

RESUMO

Nanoscale drug delivery vehicles have been harnessed extensively as carriers for cancer chemotherapeutics. However, traditional pharmaceutical approaches for nanoformulation have been a challenge with molecules that exhibit incompatible physicochemical properties, such as platinum-based chemotherapeutics. Here we propose a paradigm based on rational design of active molecules that facilitate supramolecular assembly in the nanoscale dimension. Using cisplatin as a template, we describe the synthesis of a unique platinum (II) tethered to a cholesterol backbone via a unique monocarboxylato and O→Pt coordination environment that facilitates nanoparticle assembly with a fixed ratio of phosphatidylcholine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000]. The nanoparticles formed exhibit lower IC(50) values compared with carboplatin or cisplatin in vitro, and are active in cisplatin-resistant conditions. Additionally, the nanoparticles exhibit significantly enhanced in vivo antitumor efficacy in murine 4T1 breast cancer and in K-Ras(LSL/+)/Pten(fl/fl) ovarian cancer models with decreased systemic- and nephro-toxicity. Our results indicate that integrating rational drug design and supramolecular nanochemistry can emerge as a powerful strategy for drug development. Furthermore, given that platinum-based chemotherapeutics form the frontline therapy for a broad range of cancers, the increased efficacy and toxicity profile indicate the constructed nanostructure could translate into a next-generation platinum-based agent in the clinics.


Assuntos
Antineoplásicos/farmacologia , Colesterol/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Rim/efeitos dos fármacos , Nanopartículas/química , Platina/administração & dosagem , Animais , Apoptose , Carcinoma Pulmonar de Lewis , Linhagem Celular Tumoral , Sobrevivência Celular , Colesterol/química , Cisplatino/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Concentração Inibidora 50 , Rim/metabolismo , Camundongos , Modelos Químicos , Nanotecnologia/métodos , Ácido Succínico/química
11.
ACS Appl Mater Interfaces ; 16(4): 4505-4518, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240257

RESUMO

The NLRP3 inflammasome is a crucial component of the innate immune system, playing a pivotal role in initiating and regulating the body's inflammatory response to various pathogens and cellular damage. Environmental stimuli, such as temperature, pH level, and nutrient availability, can influence the behavior and functions of innate immune cells, including immune cell activity, proliferation, and cytokine production. However, there is limited understanding regarding how mechanical forces, like shear stress, govern the intrinsic inflammatory reaction, particularly the activation of the NLRP3 inflammasome, and how shear stress impacts NLRP3 inflammasome activation through its capacity to induce alterations in gene expression and cytokine secretion. Here, we investigated how shear stress can act as a priming signal in NLRP3 inflammasome activation by exposing immortalized bone marrow-derived macrophages (iBMDMs) to numerous physiologically relevant magnitudes of shear stress before chemically inducing inflammasome activation. We demonstrated that shear stress of large magnitudes was able to prime iBMDMs more effectively for inflammasome activation compared to lower shear stress magnitudes, as quantified by the percentage of cells where ASC-CFP specks formed and IL-1ß secretion, the hallmarks of inflammasome activation. Testing this in NLRP3 and caspase-1 knockout iBMDMs showed that the NLRP3 inflammasome was primarily primed for activation due to shear stress exposure. Quantitative polymerase chain reaction (qPCR) and a small-molecule inhibitor study mechanistically determined that shear stress regulates the NLRP3 inflammasome by upregulating Piezo1, IKKß, and NLRP3. These findings offer insights into the mechanistic relationship among physiological shear stresses, inflammasome activation, and their impact on the progression of inflammatory diseases and their interconnected pathogenesis.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos , Interleucina-1beta/metabolismo , Expressão Gênica
12.
Lancet Reg Health Southeast Asia ; 26: 100425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38798984

RESUMO

Poor drug regulation in India is not a recent problem. The Indian drug market is full of look-alike, sound-alike (LASA) drugs which have not yet caught the attention of the media or the medical community. This viewpoint highlights the problem of LASA drugs and poor prescription practices and proposes solutions for involving all stakeholders in this unaddressed issue which is a huge public health problem in India.

13.
Nanoscale ; 16(9): 4678-4690, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38317511

RESUMO

The NLRP3 inflammasome, a multiprotein complex responsible for triggering the release of pro-inflammatory cytokines, plays a crucial role in inducing the inflammatory response associated with sepsis. While small molecule inhibitors of the NLRP3 inflammasome have been investigated for sepsis management, delivering NLRP3 inhibitors has been accompanied by several challenges, primarily related to the drug formulation, delivery route, stability, and toxicity. Many existing inflammasome inhibitors either show higher liver toxicity or require a high dosage to efficiently impede the inflammasome complex assembly. Moreover, the potential synergistic effects of combining multiple inflammasome inhibitors in sepsis therapy remain largely unexplored. Therefore, a rational approach is essential for presenting the potential administration of NLRP3 small molecule inhibitors to inhibit NLRP3 inflammasome activation effectively. In this context, we present a lipid nanoparticle-based dual-drug delivery system loaded with MCC 950 and disulfiram, demonstrating markedly higher efficiency compared to an equivalent amount of free-drug combinations and individual drug nanoparticles in vitro. This combination therapy substantially improved the in vivo survival rate of mice for LPS-induced septic peritonitis. Additionally, the synergistic approach illustrated a significant reduction in the expression of active caspase-1 as well as IL-1ß inhibition integral components in the NLRP3 pathway. This study underscores the importance of integrating combination therapies facilitated by nanoparticle delivery to address the limitations of small molecule inflammasome inhibitors.


Assuntos
Inflamassomos , Sepse , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo , Citocinas , Sepse/tratamento farmacológico , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia
14.
Adv Mater ; 36(15): e2308720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189549

RESUMO

Template-directed self-assembly of solidifying eutectics results in emergence of unique microstructures due to diffusion constraints and thermal gradients imposed by the template. Here, the importance of selecting the template material based on its conductivity to control heat transfer between the template and the solidifying eutectic, and thus the thermal gradients near the solidification front, is demonstrated. Simulations elucidate the relationship between the thermal properties of the eutectic and template and the resultant microstructure. The overarching finding is that templates with low thermal conductivities are generally advantageous for forming highly organized microstructures. When electrochemically porosified silicon pillars (thermal conductivity < 0.3 Wm-1K-1) are used as the template into which an AgCl-KCl eutectic is solidified, 99% of the unit cells in the solidified structure exhibit the same pattern. In contrast, when higher thermal conductivity crystalline silicon pillars (≈100 Wm-1K-1) are utilized, the expected pattern is only present in 50% of the unit cells. The thermally engineered template results in mesostructures with tunable optical properties and reflectances nearly identical to the simulated reflectances of perfect structures, indicating highly ordered patterns are formed over large areas. This work highlights the importance of controlling heat flows in template-directed self-assembly of eutectics.

15.
Adv Sci (Weinh) ; 10(6): e2204900, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603165

RESUMO

Inflammasome activation is associated with a myriad of inflammatory diseases. However, existing methods provides a limited understanding of spatiotemporal kinetics of inflammasome activation, with restricted scope for early detection of associated treatment efficacy. This limitation offers an opportunity for the development of biocompatible in-vivo inflammasome monitoring tools with translational prospects. To achieve this, they report developing a pair of lipid-based nanoparticle systems, a reporter nanoparticle consisting of a caspase-1 activatable probe alone, and a theranostic nanoparticle combining the probe with an inflammasome-inhibiting drug. This biocompatible platform enhances the probe's residence time in circulation by preventing its opsonization and allowing its sustained release over time. Their results demonstrate the specificity of reporter nanoparticles towards caspase-1 activity and provides early-on monitoring of inflammasome activation both in-vitro as well as in-vivo. Additionally, the delivery of disulfiram, an inflammasome-inhibiting drug, along with reporter probe using theranostic nanoparticles enables real-time tracking of treatment efficacy in the gouty-arthritis inflammatory model. In summary, they report an unparalleled pair of the inflammasome-associated reporter and theranostic platforms suited not only for diagnostic applications but can also detect inflammasome-targeted treatment efficiency in real-time. These findings establish two novel, sensitive nanotools for non-invasive evaluation of inflammasome-targeted immunotherapy.


Assuntos
Artrite Gotosa , Inflamassomos , Humanos , Artrite Gotosa/tratamento farmacológico , Caspase 1 , Inflamassomos/efeitos dos fármacos
16.
ACS Appl Mater Interfaces ; 15(48): 55545-55558, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990965

RESUMO

Inflammasomes are multimeric protein signaling complexes that are assembled in innate immune cells in response to a multitude of pathogen and damage-associated signals. They are essential for generating robust inflammatory responses to prevent pathogenic insults. However, inflammasome dysregulation can induce cascading immune responses, resulting in systemic toxicities and inflammatory disease. In this sense, there is a strong need to develop potent inflammasome inhibiting therapies as well as technologies to monitor their efficacy, yet current systems lack the ability to effectively image inflammasome activation and track therapy response early. To overcome these limitations, we report a novel nanoparticle system delivering both a caspase-1 cleavable inflammasome detecting probe and the NLRP3 inhibitor drug MCC-950, providing dual capabilities of monitoring and regulation of inflammasome activation in a biocompatible, tissue penetrating, and sustained release liposomal formulation. We observed this liposomal nanoreporter's ability to reduce and detect inflammasome activation both in vitro in immortalized bone marrow-derived macrophages and in vivo in a DSS-induced ulcerative colitis mouse model. Our results exhibited the nanoreporter's ability to penetrate inflammatory tissues and detect inflammasome activation early and in real-time for multiple days while alleviating inflammation in the groups coencapsulating imaging reporter and inflammasome inhibitor. Overall, the developed liposomal nanoreporter platform enables spatiotemporal delivery of imaging probe and inhibitor, captures early and sustained inflammasome detection, and induces inflammasome amelioration, thus establishing a novel tool for the real-time monitoring and treatment of inflammasome-mediated disease with high potential for clinical application.


Assuntos
Colite Ulcerativa , Inflamassomos , Animais , Camundongos , Inflamassomos/metabolismo , Caspase 1/metabolismo , Colite Ulcerativa/tratamento farmacológico , Macrófagos , Imunoterapia , Camundongos Endogâmicos C57BL
17.
Front Immunol ; 14: 1228532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868996

RESUMO

Introduction: Immunotherapies have shown great promise, but are not effective for all tumors types and are effective in less than 3% of patients with pancreatic ductal adenocarcinomas (PDAC). To make an immune treatment that is effective for more cancer patients and those with PDAC specifically, we genetically engineered Salmonella to deliver exogenous antigens directly into the cytoplasm of tumor cells. We hypothesized that intracellular delivery of an exogenous immunization antigen would activate antigen-specific CD8 T cells and reduce tumors in immunized mice. Methods: To test this hypothesis, we administered intracellular delivering (ID) Salmonella that deliver ovalbumin as a model antigen into tumor-bearing, ovalbumin-vaccinated mice. ID Salmonella delivers antigens by autonomously lysing in cells after the induction of cell invasion. Results: We showed that the delivered ovalbumin disperses throughout the cytoplasm of cells in culture and in tumors. This delivery into the cytoplasm is essential for antigen cross-presentation. We showed that co-culture of ovalbumin-recipient cancer cells with ovalbumin-specific CD8 T cells triggered a cytotoxic T cell response. After the adoptive transfer of OT-I CD8 T cells, intracellular delivery of ovalbumin reduced tumor growth and eliminated tumors. This effect was dependent on the presence of the ovalbumin-specific T cells. Following vaccination with the exogenous antigen in mice, intracellular delivery of the antigen cleared 43% of established KPC pancreatic tumors, increased survival, and prevented tumor re-implantation. Discussion: This response in the immunosuppressive KPC model demonstrates the potential to treat tumors that do not respond to checkpoint inhibitors, and the response to re-challenge indicates that new immunity was established against intrinsic tumor antigens. In the clinic, ID Salmonella could be used to deliver a protein antigen from a childhood immunization to refocus pre-existing T cell immunity against tumors. As an off-the-shelf immunotherapy, this bacterial system has the potential to be effective in a broad range of cancer patients.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Criança , Ovalbumina , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias/metabolismo , Vacinação , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Salmonella/genética
18.
Anal Chem ; 84(1): 241-6, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22035288

RESUMO

A label-free biosensor for Escherichia coli (E. coli) ORN 178 based on faradaic electrochemical impedance spectroscopy (EIS) was developed. α-Mannoside or ß-galactoside was immobilized on a gold disk electrode using a self-assembled monolayer (SAM) via a spacer terminated in a thiol functionality. Impedance measurements (Nyquist plot) showed shifts due to the binding of E. coli ORN 178, which is specific for α-mannoside. No significant change in impedance was observed for E. coli ORN 208, which does not bind to α-mannoside. With increasing concentrations of E. coli ORN 178, electron-transfer resistance (R(et)) increases before the sensor is saturated. After the Nyquist plot of E. coli/mixed SAM/gold electrode was modeled, a linear relationship between normalized R(et) and the logarithmic value of E. coli concentrations was found in a range of bacterial concentration from 10(2) to 10(3) CFU/mL. The combination of robust carbohydrate ligands with EIS provides a label-free, sensitive, specific, user-friendly, robust, and portable biosensing system that could potentially be used in a point-of-care or continuous environmental monitoring setting.


Assuntos
Carboidratos/química , Espectroscopia Dielétrica/métodos , Escherichia coli/química , Microscopia Eletrônica de Varredura
19.
Artigo em Inglês | MEDLINE | ID: mdl-35656598

RESUMO

Nanopatterning for the fabrication of optical metasurfaces entails a need for high-resolution approaches like electron beam lithography that cannot be readily scaled beyond prototyping demonstrations. Block copolymer thin film self-assembly offers an attractive alternative for producing periodic nanopatterns across large areas, yet the pattern feature sizes are fixed by the polymer molecular weight and composition. Here, a general strategy is reported which overcomes the limitation of the fixed feature size by treating the copolymer thin film as a hierarchical resist, in which the nanoscale pattern motif is defined by self-assembly. Feature sizes can then be tuned by thermal reflow controlled locally by irradiative cross-linking or chemical alteration using lithographic ultraviolet light or electron beam exposure. Using blends of polystyrene-block-poly(methylmethacrylate) (PS-b-PMMA) with PS and PMMA homopolymers, we demonstrate both self-assembled PS grating and hexagonal hole patterns; exposure-controlled reflow is then used to reduce the hole diameter by as much as 50% or increase the PS grating linewidth by more than 180%. Transferring these nanopatterns, or their inverse obtained by a lift-off approach, into silicon yields structural colors that may be prescriptively controlled based on the nanoscale feature size. Furthermore, patterned exposure enables area-selective feature size control, yielding uniform structural color patterns across centimeter square areas. Electron beam lithography is also used to show that the lithographic resolution of this selective-area control can be extended to the nanoscale dimensions of the self-assembled features. The exposure-controlled reflow approach demonstrated here takes a pivotal step toward fabricating complex, hierarchical optical metasurfaces using scalable self-assembly methods.

20.
J Biomed Mater Res A ; 110(8): 1448-1459, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35388955

RESUMO

Tumor-associated macrophages (TAMs) exist in multiple phenotypes across the spectrum, defined by an M1 antitumorigenic phenotype and an M2 pro-tumorigenic phenotype on two ends of the spectrum. A largely immunosuppressive tumor-microenvironment aids the polarization of the infiltrating macrophages to a pro-tumorigenic M2 phenotype that promotes tumor progression and metastasis. Recent developments in macrophage immunotherapy have focused on strategies to re-educate TAMs from an M2 to M1 phenotype. Recent findings in the realm of immuno-metabolism have indicated that distinct metabolic signatures accompany macrophages based on their polarization states (M1-Glycolysis and M2-TCA cycle). These metabolites are important drivers of cellular signaling responsible for acquiring these polarization states, with evidence showing that metabolism is essential to facilitate the energy requirements of immune cells and regulate immune cell response. We hypothesized that TAMs could be reprogrammed metabolically by co-delivery of drugs using a supramolecular nanoparticle system that could effectively rewire macrophage metabolism by simultaneous inhibition of the TCA cycle and upregulation of the glycolytic metabolic pathway. TLR7/8 agonist and Fatty Acid Oxidation (FAO) inhibitor loaded metabolic supramolecular nanoparticles (MSNPs) were synthesized. In vitro assays showed macrophages treated with MSNPs were reprogrammed from an M2 phenotype to an M1 phenotype while significantly upregulating phagocytosis. When injected in 4T1 tumor-bearing mice, MSNPs treatment reduced tumor growth progression more than other treatments. Hence, the delivery of TLR7/8 agonist combined with an FAO inhibitor can enhance antitumor efficacy through metabolic reprogramming of tumor-associated macrophages.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Adjuvantes Imunológicos/farmacologia , Animais , Imunoterapia , Camundongos , Neoplasias/terapia , Receptor 7 Toll-Like , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA