Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Ecol Lett ; 25(9): 1952-1960, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834518

RESUMO

For over a century, deep roots have been assumed to allow trees to avoid competition with grasses (i.e., the two-layer hypothesis). Yet, in part because it remains difficult to measure water uptake in the field, there has been a shift in savanna ecology away from the two-layer hypothesis and towards alternative explanations of tree-grass coexistence. Here, we combine hydrologic tracer experiments and soil water flow models to demonstrate how the distribution of active roots affects water uptake across a range of savanna conditions. Grass roots were shallower and provided pre-emptive access to enough soil water to allow nearly continuous grass cover, but slightly deeper roots provided trees with more total water under most conditions. This 'some water now or more water later' tradeoff varied with precipitation amount, soil texture, and tree and grass relative root abundance in ways that helped explain tree and grass landscape abundance.


Assuntos
Ecossistema , Pradaria , Poaceae , Solo , Árvores , Água
2.
New Phytol ; 226(2): 351-361, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31853979

RESUMO

Shrub encroachment, forest decline and wildfires have caused large-scale changes in semi-arid vegetation over the past 50 years. Climate is a primary determinant of plant growth in semi-arid ecosystems, yet it remains difficult to forecast large-scale vegetation shifts (i.e. biome shifts) in response to climate change. We highlight recent advances from four conceptual perspectives that are improving forecasts of semi-arid biome shifts. Moving from small to large scales, first, tree-level models that simulate the carbon costs of drought-induced plant hydraulic failure are improving predictions of delayed-mortality responses to drought. Second, tracer-informed water flow models are improving predictions of species coexistence as a function of climate. Third, new applications of ecohydrological models are beginning to simulate small-scale water movement processes at large scales. Fourth, remotely-sensed measurements of plant traits such as relative canopy moisture are providing early-warning signals that predict forest mortality more than a year in advance. We suggest that a community of researchers using modeling approaches (e.g. machine learning) that can integrate these perspectives will rapidly improve forecasts of semi-arid biome shifts. Better forecasts can be expected to help prevent catastrophic changes in vegetation states by identifying improved monitoring approaches and by prioritizing high-risk areas for management.


Assuntos
Mudança Climática , Ecossistema , Secas , Florestas , Árvores
3.
Ecol Lett ; 21(9): 1319-1329, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938882

RESUMO

Theory predicts that intraspecific competition should be stronger than interspecific competition for any pair of stably coexisting species, yet previous literature reviews found little support for this pattern. We screened over 5400 publications and identified 39 studies that quantified phenomenological intraspecific and interspecific interactions in terrestrial plant communities. Of the 67% of species pairs in which both intra- and interspecific effects were negative (competitive), intraspecific competition was, on average, four to five-fold stronger than interspecific competition. Of the remaining pairs, 93% featured intraspecific competition and interspecific facilitation, a situation that stabilises coexistence. The difference between intra- and interspecific effects tended to be larger in observational than experimental data sets, in field than greenhouse studies, and in studies that quantified population growth over the full life cycle rather than single fitness components. Our results imply that processes promoting stable coexistence at local scales are common and consequential across terrestrial plant communities.


Assuntos
Ecossistema , Plantas , Dinâmica Populacional
4.
Ecology ; 98(12): 3063-3073, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28880994

RESUMO

Plant soil feedbacks (PSFs) are thought to be important to plant growth and species coexistence, but most support for these hypotheses is derived from short-term greenhouse experiments. Here we use a seven-year, common garden experiment to measure PSFs for seven native and six nonnative species common to the western United States. We use these long-term, field-based estimates to test correlations between PSF and plant landscape abundance, species origin, functional type, and lifespan. To assess potential PSF mechanisms, we also measured soil microbial community composition, root biomass, nitrogen cycling, bulk density, penetration resistance, and shear strength. Plant abundance on the landscape and plant lifespan were positively correlated with PSFs, though this effect was due to the relationships for native plants. PSFs were correlated with indices of soil microbial community composition. Soil nutrient and physical traits and root biomass differed among species but were not correlated with PSF. While results must be taken with caution because only 13 species were examined, these species represent most of the dominant plant species in the system. Results suggest that native plant abundance is associated with the ability of long-lived plants to create positive plant-soil microbe interactions, while short-lived nonnative plants maintain dominance by avoiding soil-borne antagonists, increasing nitrogen cycling and dedicating resources to aboveground growth and reproduction rather than to belowground growth. Broadly, results suggest that PSFs are correlated with a suite of traits that determine plant abundance.


Assuntos
Plantas , Solo/química , Biomassa , Meio Ambiente
5.
Ecology ; 97(8): 2064-2073, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859209

RESUMO

It has become clear that plants can create soils that affect subsequent plant growth. However, because plant-soil feedbacks (PSFs) are typically measured in monoculture experiments, it remains unclear to what extent PSFs affect plant growth in communities. Here we used data from a factorial PSF experiment to predict the biomass of 12 species grown in 162 plant community combinations. Five different plant growth models were parameterized with either monoculture biomass data (Null) or with PSF data (PSF) and model predictions were compared to plant growth observed in communities. For each of the five models, PSF model predictions were closer to observed species biomass in communities than Null model predictions. PSFs, which were associated with a 28% difference in plant biomass across soil types, explained 10% more variance than Null models. Results provided strong support for a small role for PSFs in predicting plant growth in communities and suggest several reasons that PSFs, as traditionally measured in monoculture experiments, may overestimate PSF effects in communities. First, monoculture data used in Null models inherently includes "self " PSF effects. Second, PSFs must be large relative to differences in intrinsic growth rates among species to change competitive outcomes. Third, PSFs must vary among species to change species relative abundances.


Assuntos
Biodiversidade , Biomassa , Fenômenos Fisiológicos Vegetais , Plantas , Solo , Desenvolvimento Vegetal
6.
Oecologia ; 171(1): 25-37, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22752210

RESUMO

Niche partitioning of resources by plants is believed to be a fundamental aspect of plant coexistence and biogeochemical cycles; however, measurements of the timing and location of resource use are often lacking because of the difficulties of belowground research. To measure niche partitioning of soil water by grasses, planted saplings, and trees in a mesic savanna (Kruger National Park, South Africa), we injected deuterium oxide into 102,000 points in 15, 154-m(2) plots randomly assigned to one of five depths (0-120 cm) and one of three time periods during the 2008/2009 growing season. Grasses, saplings and trees all demonstrated an exponential decline in water uptake early in the season when resources were abundant. Later in the season, when resources were scarce, grasses continued to extract the most water from the shallowest soil depths (5 cm), but saplings and trees shifted water uptake to deeper depths (30-60 cm). Saplings, in particular, rapidly established roots to at least 1 m and used these deep roots to a greater extent than grasses or trees. Helping to resolve contradictory observations of the relative importance of deep and shallow roots, our results showed that grasses, saplings and trees all extract the most water from shallow soils when it is available but that woody plants can rapidly shift water uptake to deeper soils when resources are scarce. Results highlight the importance of temporal changes in water uptake and the problems with inferring spatial and temporal partitioning of soil water uptake from root biomass measurements alone.


Assuntos
Poaceae/fisiologia , Árvores/fisiologia , Água/metabolismo , Biomassa , Monitoramento Ambiental , Raízes de Plantas/metabolismo , Estações do Ano , Solo/química , África do Sul
7.
Biology (Basel) ; 12(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37997973

RESUMO

We used high-throughput sequencing and multivariate analyses to describe soil microbial community composition in two four-year field plant-soil feedback (PSF) experiments in Minnesota, USA and Jena, Germany. In descending order of variation explained, microbial community composition differed between the two study sites, among years, between bulk and rhizosphere soils, and among rhizosphere soils cultivated by different plant species. To try to identify soil organisms or communities that may cause PSF, we correlated plant growth responses with the microbial community composition associated with different plants. We found that plant biomass was correlated with values on two multivariate axes. These multivariate axes weighted dozens of soil organisms, suggesting that PSF was not caused by individual pathogens or symbionts but instead was caused by 'many weak' plant-microbe interactions. Taken together, the results suggest that PSFs result from complex interactions that occur within the context of a much larger soil microbial community whose composition is determined by factors associated with 'site' or year, such as soil pH, soil type, and weather. The results suggest that PSFs may be highly variable and difficult to reproduce because they result from complex interactions that occur in the context of a larger soil microbial community.

8.
Proc Biol Sci ; 279(1740): 3020-6, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22496190

RESUMO

Plant-soil feedbacks (PSFs) have gained attention for their role in plant community dynamics, but their role in productivity has been overlooked. We developed and tested a biomass-specific, multi-species model to examine the role of PSFs in diversity-productivity relationships. The model predicts a negative relationship between PSFs and overyielding: plants with negative PSFs grow more in communities than in monoculture (i.e. overyield), and plants with positive PSFs grow less in communities than in monoculture (i.e. underyield). This effect is predicted to increase with diversity and saturate at low species richness because the proportion of 'self-cultivated' soils rapidly decreases as species are added to a community. Results in a set of glasshouse experiments supported model predictions. We found that PSFs measured in one experiment were negatively correlated with overyielding in three-species plant communities measured in a separate experiment. Furthermore, when parametrized with our experimental PSF data, our model successfully predicted species-level overyielding and underyielding. The model was less effective at predicting community-level overyielding and underyielding, although this appeared to reflect large differences between communities with or without nitrogen-fixing plants. Results provide conceptual and experimental support for the role of PSFs in diversity-productivity relationships.


Assuntos
Biodiversidade , Ecossistema , Magnoliopsida/crescimento & desenvolvimento , Desenvolvimento Vegetal , Solo , Asteraceae/crescimento & desenvolvimento , Asteraceae/metabolismo , Biomassa , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Magnoliopsida/classificação , Magnoliopsida/metabolismo , Modelos Biológicos , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Simbiose
9.
Ecology ; 103(9): e3736, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35462418

RESUMO

Plant productivity often increases with species richness, but the mechanisms explaining this diversity-productivity relationship are not fully understood. We tested if plant-soil feedbacks (PSF) can help to explain how biomass production changes with species richness. Using a greenhouse experiment, we measured all 240 possible PSFs for 16 plant species. At the same time, 49 plant communities with diversities ranging from one to 16 species were grown in replicated pots. A suite of plant community growth models, parameterized with (PSF) or without PSF (Null) effects, was used to predict plant growth observed in the communities. Selection effects and complementarity effects in modeled and observed data were separated. Plants created soils that increased or decreased subsequent plant growth by 25% ± 10%, but because PSFs were negative for C3 and C4 grasses, neutral for forbs, and positive for legumes, the net effect of all PSFs was a 2% ± 17% decrease in plant growth. Experimental plant communities with 16 species produced 37% more biomass than monocultures due to complementarity. Null models incorrectly predicted that 16-species communities would overyield due to selection effects. Adding PSF effects to Null models decreased selection effects, increased complementarity effects, and improved correlations between observed and predicted community biomass. PSF models predicted 26% of overyielding caused by complementarity observed in experimental communities. Relative to Null models, PSF models improved the predictions of the magnitude and mechanism of the diversity-productivity relationship. Results provide clear support for PSFs as one of several mechanisms that determine diversity-productivity relationships and help close the gap in understanding how biodiversity enhances ecosystem services such as biomass production.


Assuntos
Ecossistema , Solo , Biodiversidade , Biomassa , Retroalimentação , Plantas
10.
Trends Plant Sci ; 26(3): 206-209, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33454210

RESUMO

Plant water isotopic compositions are widely used to describe patterns of soils water uptake. Although valuable, the technique only provides relative uptake distributions, which can be misleading. Without information on total transpiration, the technique cannot address central questions on drought response, competition, and species coexistence.


Assuntos
Hidrologia , Solo , Secas , Isótopos , Água
11.
Ecology ; 102(1): e03212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001437

RESUMO

As the atmosphere warms, precipitation events become larger, but less frequent. Yet, there is fundamental disagreement about how increased precipitation intensity will affect vegetation. Walter's two-layer hypothesis and experiments testing it have demonstrated that precipitation intensity can increase woody plant growth. Observational studies have found the opposite pattern. Not only are the patterns contradictory, but inference is largely limited to grasslands and savannas. We tested the effects of increased precipitation intensity in a shrub-steppe ecosystem that receives >30% of its precipitation as snow. We used 11 (8 × 8 m) shelters to collect and redeposit rain and snow as larger, more intense events. Total annual precipitation was the same in all plots, but each plot received different precipitation event sizes ranging from 1 to 18 mm. Over three growing seasons, larger precipitation event sizes increased soil water availability, sagebrush (Artemisia tridentata) stem radius, and canopy greenness, decreased new root growth in shallow soils, and had no effect on herbaceous plant cover. Thus, we found that increased precipitation intensity can increase soil water availability and woody plant growth in a cold semiarid system. Assuming that stem growth is positively correlated with shrub reproduction, establishment and spread, results suggest that increasing precipitation intensity may have contributed to the woody plant encroachment observed around the world in the past 50 yr. Further, continuing increases in precipitation intensity caused by atmospheric warming are likely to continue to contribute to shrub encroachment in the future.


Assuntos
Artemisia , Ecossistema , Meio Ambiente , Chuva , Solo
12.
Commun Biol ; 4(1): 789, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172839

RESUMO

Species-rich plant communities can produce twice as much aboveground biomass as monocultures, but the mechanisms remain unresolved. We tested whether plant-soil feedbacks (PSFs) can help explain these biodiversity-productivity relationships. Using a 16-species, factorial field experiment we found that plants created soils that changed subsequent plant growth by 27% and that this effect increased over time. When incorporated into simulation models, these PSFs improved predictions of plant community growth and explained 14% of overyielding. Here we show quantitative, field-based evidence that diversity maintains productivity by suppressing plant disease. Though this effect alone was modest, it helps constrain the role of factors, such as niche partitioning, that have been difficult to quantify. This improved understanding of biodiversity-productivity relationships has implications for agriculture, biofuel production and conservation.


Assuntos
Biodiversidade , Desenvolvimento Vegetal , Retroalimentação , Solo
13.
Ecol Evol ; 11(17): 11651-11663, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522331

RESUMO

Plant-soil feedback (PSF) has gained attention as a mechanism promoting plant growth and coexistence. However, most PSF research has measured monoculture growth in greenhouse conditions. Translating PSFs into effects on plant growth in field communities remains an important frontier for PSF research. Using a 4-year, factorial field experiment in Jena, Germany, we measured the growth of nine grassland species on soils conditioned by each of the target species (i.e., 72 PSFs). Plant community models were parameterized with or without these PSF effects, and model predictions were compared to plant biomass production in diversity-productivity experiments. Plants created soils that changed subsequent plant biomass by 40%. However, because they were both positive and negative, the average PSF effect was 14% less growth on "home" than on "away" soils. Nine-species plant communities produced 29 to 37% more biomass for polycultures than for monocultures due primarily to selection effects. With or without PSF, plant community models predicted 28%-29% more biomass for polycultures than for monocultures, again due primarily to selection effects. Synthesis: Despite causing 40% changes in plant biomass, PSFs had little effect on model predictions of plant community biomass across a range of species richness. While somewhat surprising, a lack of a PSF effect was appropriate in this site because species richness effects in this study were caused by selection effects and not complementarity effects (PSFs are a complementarity mechanism). Our plant community models helped us describe several reasons that even large PSF may not affect plant productivity. Notably, we found that dominant species demonstrated small PSF, suggesting there may be selective pressure for plants to create neutral PSF. Broadly, testing PSFs in plant communities in field conditions provided a more realistic understanding of how PSFs affect plant growth in communities in the context of other species traits.

14.
New Phytol ; 188(1): 199-209, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20561202

RESUMO

• As described in the two-layer hypothesis, woody plants are often assumed to use deep soils to avoid competition with grasses. Yet the direct measurements of root activity needed to test this hypothesis are rare. • Here, we injected deuterated water into four soil depths, at four times of year, to measure the vertical and horizontal location of water uptake by trees and grasses in a mesic savanna in Kruger National Park, South Africa. • Trees absorbed 24, 59, 14 and 4% of tracer from the 5, 20, 50, and 120 cm depths, respectively, while grasses absorbed 61, 29, 9 and 0.3% of tracer from the same depths. Only 44% of root mass was in the top 20 cm. Trees absorbed tracer under and beyond their crowns, while 98% of tracer absorbed by grasses came from directly under the stem. • Trees and grasses partitioned soil resources (20 vs 5 cm), but this partitioning did not reflect, as suggested by the two-layer hypothesis, the ability of trees to access deep soil water that was unavailable to grasses. Because root mass was a poor indicator of root activity, our results highlight the importance of precise root activity measurements.


Assuntos
Óxido de Deutério/metabolismo , Ecossistema , Marcação por Isótopo/métodos , Poaceae/metabolismo , Árvores/metabolismo , Clima Tropical , Água/metabolismo , Biomassa , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Chuva , Solo , África do Sul , Fatores de Tempo , Árvores/anatomia & histologia
15.
Ecology ; 101(6): e03023, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32083736

RESUMO

Relatively little is known about how plant-soil feedbacks (PSFs) may affect plant growth in field conditions where factors such as herbivory may be important. Using a potted experiment in a grassland, we measured PSFs with and without aboveground insect herbivory for 20 plant species. We then compared PSF values to plant landscape abundance. Aboveground herbivory had a large negative effect on PSF values. For 15 of 20 species, PSFs were more negative with herbivory than without. This occurred because plant biomass on "home" soils was smaller with herbivory than without. PSF values with herbivory were correlated with plant landscape abundance, whereas PSF values without herbivory were not. Shoot nitrogen concentrations suggested that plants create soils that increase nitrogen uptake, but that greater shoot nitrogen values increase herbivory and that the net effect of positive PSF and greater aboveground herbivory is less aboveground biomass. Results provided clear evidence that PSFs alone have limited power in explaining species abundances and that herbivory has stronger effects on plant biomass and growth on the landscape. Our results provide a potential explanation for observed differences between greenhouse and field PSF experiments and suggest that PSF experiments need to consider important biotic interactions, like aboveground herbivory, particularly when the goal of PSF research is to understand plant growth in field conditions.


Assuntos
Herbivoria , Solo , Animais , Biomassa , Retroalimentação , Desenvolvimento Vegetal , Plantas
16.
Ecol Evol ; 10(18): 9776-9787, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005344

RESUMO

Deep roots have long been thought to allow trees to coexist with shallow-rooted grasses. However, data demonstrating how root distributions affect water uptake and niche partitioning are uncommon.We describe tree and grass root distributions using a depth-specific tracer experiment six times over two years in a subtropical savanna, Kruger National Park, South Africa. These point-in-time measurements were then used in a soil water flow model to simulate continuous water uptake by depth and plant growth form (trees and grasses) across two growing seasons. This allowed estimates of the total amount of water a root distribution could absorb as well as the amount of water a root distribution could absorb in excess of the other rooting distribution (i.e., unique hydrological niche).Most active tree and grass roots were in shallow soils: The mean depth of water uptake was 22 cm for trees and 17 cm for grasses. Slightly deeper rooting distributions provided trees with 5% more soil water than the grasses in a drier season, but 13% less water in a wetter season. Small differences also provided each rooting distribution (tree or grass) with unique hydrological niches of 4 to 13 mm water.The effect of rooting distributions has long been inferred. By quantifying the depth and timing of water uptake, we demonstrated how even small differences in rooting distributions can provide plants with resource niches that can contribute to species coexistence. Differences in total water uptake and unique hydrological niche sizes were small in this system, but they indicated that tradeoffs in rooting strategies can be expected to contribute to tree and grass coexistence because 1) competitive advantages change over time and 2) plant growth forms always have access to a soil resource pool that is not available to the other plant growth form.

17.
PLoS One ; 14(3): e0207047, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883554

RESUMO

Non-native, early-successional plants have been observed to maintain dominance for decades, particularly in semi-arid systems. Here, two approaches were used to detect potentially slow successional patterns in an invaded semi-arid system: chronosequence and direct observation. Plant communities in 25 shrub-steppe sites that represented a 50-year chronosequence of agricultural abandonment were monitored for 13 years. Each site contained a field abandoned from agriculture (ex-arable) and an adjacent never-tilled field. Ex-arable fields were dominated by short-lived, non-native plants. These 'weedy' communities had lower species richness, diversity and ground cover, and greater annual and forb cover than communities in never-tilled fields. Never-tilled fields were dominated by long-lived native plants. Across the chronosequence, plant community composition remained unchanged in both ex-arable and never-tilled fields. In contrast, 13 years of direct observation detected directional changes in plant community composition within each field type. Despite within-community changes in both field types during direct observation, there was little evidence that native plants were invading ex-arable fields or that non-native plants were invading never-tilled fields. The more-controlled, direct observation approach was more sensitive to changes in community composition, but the chronosequence approach suggested that these changes are unlikely to manifest over longer time periods, at least in part because of disturbances in the system. Results highlight the long-term consequences of soil disturbance and the difficulty of restoring native perennials in disturbed semi-arid systems.


Assuntos
Agricultura , Biodiversidade , Ecossistema , Desenvolvimento Vegetal , Plantas , Solo/química , Conservação dos Recursos Naturais , Incêndios
18.
Ecol Lett ; 11(9): 980-92, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18522641

RESUMO

Plants can change soil biology, chemistry and structure in ways that alter subsequent plant growth. This process, referred to as plant-soil feedback (PSF), has been suggested to provide mechanisms for plant diversity, succession and invasion. Here we use three meta-analytical models: a mixed model and two Bayes models, one correcting for sampling dependence and one correcting for sampling and hierarchical dependence (delta-splitting model) to test these hypotheses. All three models showed that PSFs have medium to large negative effects on plant growth, and especially grass growth, the life form for which we had the most data. This supports the hypothesis that PSFs, through negative frequency dependence, maintain plant diversity, especially in grasslands. PSFs were also large and negative for annuals and natives, but the delta-splitting model indicated that more studies are needed for these results to be conclusive. Our results support the hypotheses that PSFs encourage successional replacements and plant invasions. Most studies were performed using monocultures of grassland species in greenhouse conditions. Future research should examine PSFs in plant communities, non-grassland systems and field conditions.


Assuntos
Modelos Biológicos , Desenvolvimento Vegetal , Solo , Biodiversidade , Dinâmica Populacional
19.
Ecol Evol ; 8(4): 2041-2049, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468023

RESUMO

Plant-soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa, and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata. Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other's growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors through soil-mediated effects.

20.
PLoS One ; 13(1): e0191396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29373605

RESUMO

Our goal was to describe stomatal conductance (gs) and the site-scale environmental parameters that best predict gs in Kruger National Park (KNP), South Africa. Dominant grass and woody species were measured over two growing seasons in each of four study sites that represented the natural factorial combination of mean annual precipitation [wet (750 mm) or dry (450 mm)] and soil type (clay or sand) found in KNP. A machine-learning (random forest) model was used to describe gs as a function of plant type (species or functional group) and site-level environmental parameters (CO2, season, shortwave radiation, soil type, soil moisture, time of day, vapor pressure deficit and wind speed). The model explained 58% of the variance among 6,850 gs measurements. Species, or plant functional group, and shallow (0-20 cm) soil moisture had the greatest effect on gs. Atmospheric drivers and soil type were less important. When parameterized with three years of observed environmental data, the model estimated mean daytime growing season gs as 68 and 157 mmol m-2 sec-1 for grasses and woody plants, respectively. The model produced here could, for example, be used to estimate gs and evapotranspiration in KNP under varying climate conditions. Results from this field-based study highlight the role of species identity and shallow soil moisture as primary drivers of gs in savanna ecosystems of KNP.


Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Plantas/classificação , Plantas/metabolismo , Solo/química , Água/metabolismo , Atmosfera/química , Aprendizado de Máquina , Modelos Estatísticos , Poaceae/metabolismo , África do Sul , Madeira/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA