Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474054

RESUMO

Colorectal cancer (CRC) is a multifactorial disease involving genetic and epigenetic factors, such as miRNAs. Sequencing-based studies have revealed that miRNAs have many isoforms (isomiRs) with modifications at the 3'- and 5'-ends or in the middle, resulting in distinct targetomes and, consequently, functions. In the present study, we aimed to evaluate the putative targets and functional role of miR-1246 and its two 5'-isoforms (ISO-miR-1246_a and ISO-miR-1246_G) in vitro. Commercial Caco-2 cells of CRC origin were analyzed for the expression of WT-miR-1246 and its 5'-isoforms using small RNA sequencing data, and the overabundance of the two miR-1246 isoforms was determined in cells. The transcriptome analysis of Caco-2 cells transfected with WT-miR-1246, ISO-miR-1246_G, and ISO-miR-1246_a indicated the minor overlap of the targetomes between the studied miRNA isoforms. Consequently, an enrichment analysis showed the involvement of the potential targets of the miR-1246 isoforms in distinct signaling pathways. Cancer-related pathways were predominantly more enriched in dysregulated genes in ISO-miR-1246_G and ISO-miR-1246_a, whereas cell cycle pathways were more enriched in WT-miR-1246. The functional analysis of WT-miR-1246 and its two 5'-isoforms revealed that the inhibition of any of these molecules had a tumor-suppressive role (reduced cell viability and migration and promotion of early cell apoptosis) in CRC cells. However, the 5'-isoforms had a stronger effect on viability compared with WT-miR-1246. To conclude, this research shows that WT-miR-1246 and its two 5'-isoforms have different targetomes and are involved in distinct signaling pathways but collectively play an important role in CRC pathogenesis.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Células CACO-2 , MicroRNAs/genética , Sequência de Bases , Perfilação da Expressão Gênica , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica
2.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216222

RESUMO

Regulatory changes occurring early in colorectal cancer development remain poorly investigated. Since the majority of cases develop from polyps in the adenoma-carcinoma transition, a search of early molecular features, such as aberrations in miRNA expression occurring prior to cancer development, would enable identification of potentially causal, rather than consequential, candidates in the progression of polyp to cancer. In the current study, by employing small RNA-seq profiling of colon biopsy samples, we described differentially expressed miRNAs and their isoforms in the adenoma-carcinoma transition. Analysis of healthy-adenoma-carcinoma sequence in an independent validation group enabled us to identify early deregulated miRNAs including hsa-miR-1246 and hsa-miR-215-5p, the expressions of which are, respectively, gradually increasing and decreasing. Loss-of-function experiments revealed that inhibition of hsa-miR-1246 lead to reduced cell viability, colony formation, and migration rate, thereby indicating an oncogenic effect of this miRNA in vitro. Subsequent western blot and luciferase reporter assay provided evidence of hsa-miR-1246 being involved in the regulation of target AXIN2 and CFTR genes' expression. To conclude, the present study revealed possible involvement of hsa-miR-1246 in early colorectal cancer development and regulation of tumor suppressors AXIN2 and CFTR.


Assuntos
Adenoma/genética , Proteína Axina/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , MicroRNAs/genética , Células CACO-2 , Carcinogênese/genética , Linhagem Celular Tumoral , Colo/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Células HCT116 , Humanos
3.
Sci Rep ; 14(1): 4456, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396014

RESUMO

Patient-derived human intestinal organoids are becoming an indispensable tool for the research of digestive system in health and disease. However, very little is still known about the long-term culturing effect on global genomic methylation level in colonic epithelial organoids derived from healthy individuals as well as active and quiescent ulcerative colitis (UC) patients. In this study, we aimed to evaluate the epigenetic stability of these organoids by assessing the methylation level of LINE-1 during prolonged culturing. We found that LINE-1 region of both healthy control and UC patient colon tissues as well as corresponding epithelial organoids is highly methylated (exceeding 60%). We also showed that long-term culturing of colonic epithelial organoids generated from stem cells of healthy and diseased (both active and quiescent UC) individuals results in decrease of LINE-1 (up to 8%) methylation level, when compared to tissue of origin and short-term cultures. Moreover, we revealed that LINE-1 methylation level in sub-cultured organoids decreases at different pace depending on the patient diagnosis (healthy control, active or quiescent UC). Therefore, we propose LINE-1 as a potential and convenient biomarker for reliable assessment of global methylation status of patient-derived intestinal epithelial organoids in routine testing of ex vivo cultures.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Metilação de DNA , Organoides , Colo
4.
J Crohns Colitis ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022905

RESUMO

BACKGROUND AND AIMS: Colonic epithelial barrier dysfunction is one of the early events in ulcerative colitis (UC) and microRNAs (miRNAs) participate in its regulation. However, cell type-specific miRNome during UC is still unknown. Thus, we aimed to explore miRNA expression patterns in colon tissue and epithelial cells at active and quiescent UC. METHODS: Small RNA-sequencing in colon tissue, crypt-bottom (CD44+), and crypt-top (CD66a+) colonic epithelial cells from two cohorts of UC patients (n=74) and healthy individuals (n=50) was performed. Data analysis encompassed differential expression, weighted gene co-expression network, correlation, gene-set enrichment analyses. RESULTS: Differentially expressed colonic tissue miRNAs showed potential involvement in regulation of interleukin-4 and interleukin-13 signalling during UC. As this pathway plays role in intestinal barrier regulation, consecutive analysis of spatially distinct colonic epithelial cell populations was performed. Cell-type (crypt-top and crypt-bottom) specific miRNA expression patterns were identified in both active and quiescent UC. Target genes of differentially expressed epithelial miRNAs at different disease activity were overrepresented in epithelial cell migration and therefore intestinal barrier integrity regulation. The pro-inflammatory miRNA co-expression module M1 correlated with endoscopic disease activity and successfully distinguished active and quiescent UC not only in both epithelial cell populations, but also in the colon tissue. The anti-inflammatory module M2 was specific to crypt-bottom cells and significantly enriched in the quiescent UC patients. CONCLUSIONS: miRNA expression was specific to colonic epithelial cell populations and UC state, reflecting endoscopic disease activity. Irrespective of the UC state, deregulated epithelial miRNAs were associated with regulation of intestinal barrier integrity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA