Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126199

RESUMO

BACKGROUND: Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known. METHODS: We found that ApoE knockout mice fed a Western diet recapitulate many features of HFpEF. Single-cell RNA sequencing was used for expression analysis of CD45+ cardiac cells to evaluate the involvement of inflammation in diastolic dysfunction. We focused bioinformatics analysis on macrophages, obtaining high-resolution identification of subsets of these cells in the heart, enabling us to study the outcomes of metabolic distress on the cardiac macrophage infiltrate and to identify a macrophage-to-cardiomyocyte regulatory axis. To test whether a clinically relevant sodium glucose cotransporter-2 inhibitor could ameliorate the cardiac immune infiltrate profile in our model, mice were randomized to receive the sodium glucose cotransporter-2 inhibitor dapagliflozin or vehicle for 8 weeks. RESULTS: ApoE knockout mice fed a Western diet presented with reduced diastolic function, reduced exercise tolerance, and increased pulmonary congestion associated with cardiac lipid overload and reduced polyunsaturated fatty acids. The main immune cell types infiltrating the heart included 4 subpopulations of resident and monocyte-derived macrophages, determining a proinflammatory profile exclusively in ApoE knockout- Western diet mice. Lipid overload had a direct effect on inflammatory gene activation in macrophages, mediated through endoplasmic reticulum stress pathways. Investigation of the macrophage-to-cardiomyocyte regulatory axis revealed the potential effects on cardiomyocytes of multiple inflammatory cytokines secreted by macrophages, affecting pathways such as hypertrophy, fibrosis, and autophagy. Finally, we describe an anti-inflammatory effect of sodium glucose cotransporter-2 inhibitor in this model. CONCLUSIONS: Using single-cell RNA sequencing , in a model of diastolic dysfunction driven by hyperlipidemia, we have determined the effects of metabolic distress on cardiac inflammatory cells, in particular on macrophages, and suggest sodium glucose cotransporter-2 inhibitors as potential therapeutic agents for the targeting of a specific phenotype of HFpEF.

2.
PLoS One ; 19(2): e0297872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330065

RESUMO

Macrophages, key players in the innate immune system, showcase remarkable adaptability. Derived from monocytes, these phagocytic cells excel in engulfing and digesting pathogens and foreign substances as well as contributing to antigen presentation, initiating and regulating adaptive immunity. Macrophages are highly plastic, and the microenvironment can shaper their phenotype leading to numerous distinct polarized subsets, exemplified by the two ends of the spectrum: M1 (classical activation, inflammatory) and M2 (alternative activation, anti-inflammatory). RNA sequencing (RNA-Seq) has revolutionized molecular biology, offering a comprehensive view of transcriptomes. Unlike microarrays, RNA-Seq detects known and novel transcripts, alternative splicing, and rare transcripts, providing a deeper understanding of genome complexity. Despite the decreasing costs of RNA-Seq, data consolidation remains limited, hindering noise reduction and the identification of authentic signatures. Macrophages polarization is routinely ascertained by qPCR to evaluate those genes known to be characteristic of M1 or M2 skewing. Yet, the choice of these genes is literature- and experience-based, lacking therefore a systematic approach. This manuscript builds on the significant increase in deposited RNA-Seq datasets to determine an unbiased and robust murine M1 and M2 polarization profile. We now provide a consolidated list of global M1 differentially expressed genes (i.e. robustly modulated by IFN-γ, LPS, and LPS+ IFN-γ) as well as consolidated lists of genes modulated by each stimulus (IFN-γ, LPS, LPS+ IFN-γ, and IL-4).


Assuntos
Lipopolissacarídeos , Macrófagos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Monócitos , Fenótipo , Transcriptoma , Ativação de Macrófagos/genética
3.
Cancer Immunol Res ; 12(4): 413-426, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38349973

RESUMO

Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.


Assuntos
Colite Ulcerativa , Neoplasias Associadas a Colite , Neutrófilos , Animais , Humanos , Camundongos , Carcinogênese , Colite/patologia , Colite Ulcerativa/metabolismo , Neoplasias Associadas a Colite/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo
4.
Front Oncol ; 14: 1405612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988711

RESUMO

Introduction: Metabolic reprogramming is a hallmark feature of pancreatic ductal adenocarcinoma (PDAC). A pancreatic juice (PJ) metabolic signature has been reported to be prognostic of oncological outcome for PDAC. Integration of PJ profiling with transcriptomic and spatial characterization of the tumor microenvironment would help in identifying PDACs with peculiar vulnerabilities. Methods: We performed a transcriptomic analysis of 26 PDAC samples grouped into 3 metabolic clusters (M_CL) according to their PJ metabolic profile. We analyzed molecular subtypes and transcriptional differences. Validation was performed by multidimensional imaging on tumor slides. Results: Pancreatic juice metabolic profiling was associated with PDAC transcriptomic molecular subtypes (p=0.004). Tumors identified as M_CL1 exhibited a non-squamous molecular phenotype and demonstrated longer survival. Enrichment analysis revealed the upregulation of immune genes and pathways in M_CL1 samples compared to M_CL2, the group with worse prognosis, a difference confirmed by immunofluorescence on tissue slides. Enrichment analysis of 39 immune signatures by xCell confirmed decreased immune signatures in M_CL2 compared to M_CL1 and allowed a stratification of patients associated with longer survival. Discussion: PJ metabolic fingerprints reflect PDAC molecular subtypes and the immune microenvironment, confirming PJ as a promising source of biomarkers for personalized therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA