Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 77: 7-15, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582961

RESUMO

The use of antibiotics has recently risen to prominence in neuroscience due to their potential value in studying the microbiota-gut-brain axis. In this context they have been largely employed to illustrate the many influences of the gut microbiota on brain function and behaviour. Much of this research is bolstered by the abnormal behaviour seen in germ-free animals and other well-controlled experiments. However, this literature has largely failed to consider the neuroactive potential of antibiotics themselves, independent from, or in addition to, their microbicidal effects. This is problematic, as clinical as well as experimental literature, largely neglected through the past decade, has clearly demonstrated that broad classes of antibiotics are neuroactive or neurotoxic. This is true even for some antibiotics that are widely regarded as not absorbed in the intestinal tract, and is especially concerning when considering the highly-concentrated and widely-ranging doses that have been used. In this review we will critically survey the clinical and experimental evidence that antibiotics may influence a variety of nervous system functions, from the enteric nervous system through to the brain and resultant behaviour. We will discuss substantial evidence which clearly suggests neuro-activity or -toxicity by most classes of antibiotics. We will conclude that, while evidence for the microbiota-gut-brain axis remains strong, clinical and experimental studies which employ antibiotics to probe it must consider this potential confound.


Assuntos
Antibacterianos/farmacologia , Encéfalo/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Animais , Encéfalo/fisiologia , Sistema Nervoso Central/efeitos dos fármacos , Depressores do Sistema Nervoso Central/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Humanos , Intestinos/microbiologia , Microbiota/fisiologia , Sistema Nervoso/efeitos dos fármacos
2.
BMC Med ; 14: 58, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27090095

RESUMO

INTRODUCTION: The microbiota-gut-brain axis is a term that is commonly used and covers a broad set of functions and interactions between the gut microbiome, endocrine, immune and nervous systems and the brain. The field is not much more than a decade old and so large holes exist in our knowledge. DISCUSSION: At first sight it appears gut microbes are largely responsible for the development, maturation and adult function of the enteric nervous system as well as the blood brain barrier, microglia and many aspects of the central nervous system structure and function. Given the state of the art in this exploding field and the hopes, as well as the skepticism, which have been engendered by its popular appeal, we explore recent examples of evidence in rodents and data derived from studies in humans, which offer insights as to pathways involved. Communication between gut and brain depends on both humoral and nervous connections. Since these are bi-directional and occur through complex communication pathways, it is perhaps not surprising that while striking observations have been reported, they have often either not yet been reproduced or their replication by others has not been successful. CONCLUSIONS: We offer critical and cautionary commentary on the available evidence, and identify gaps in our knowledge that need to be filled so as to achieve translation, where possible, into beneficial application in the clinical setting.


Assuntos
Encéfalo , Sistema Nervoso Entérico , Microbioma Gastrointestinal , Trato Gastrointestinal , Neuroimunomodulação , Encéfalo/fisiologia , Fezes , Humanos
3.
FASEB J ; 29(2): 684-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25392266

RESUMO

Ingestion of a commensal bacteria, Lactobacillus rhamnosus JB-1, has potent immunoregulatory effects, and changes nerve-dependent colon migrating motor complexes (MMCs), enteric nerve function, and behavior. How these alterations occur is unknown. JB-1 microvesicles (MVs) are enriched for heat shock protein components such as chaperonin 60 heat-shock protein isolated from Escherichia coli (GroEL) and reproduce regulatory and neuronal effects in vitro and in vivo. Ingested labeled MVs were detected in murine Peyer's patch (PP) dendritic cells (DCs) within 18 h. After 3 d, PP and mesenteric lymph node DCs assumed a regulatory phenotype and increased functional regulatory CD4(+)25(+)Foxp3+ T cells. JB-1, MVs, and GroEL similarly induced phenotypic change in cocultured DCs via multiple pathways including C-type lectin receptors specific intercellular adhesion molecule-3 grabbing non-integrin-related 1 and Dectin-1, as well as TLR-2 and -9. JB-1 and MVs also decreased the amplitude of neuronally dependent MMCs in an ex vivo model of peristalsis. Gut epithelial, but not direct neuronal application of, MVs, replicated functional effects of JB-1 on in situ patch-clamped enteric neurons. GroEL and anti-TLR-2 were without effect in this system, suggesting the importance of epithelium neuron signaling and discrimination between pathways for bacteria-neuron and -immune communication. Together these results offer a mechanistic explanation of how Gram-positive commensals and probiotics may influence the host's immune and nervous systems.


Assuntos
Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal/inervação , Sistema Imunitário/fisiologia , Lacticaseibacillus rhamnosus/imunologia , Animais , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/citologia , Chaperonina 60/metabolismo , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/microbiologia , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/metabolismo , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Peristaltismo , Nódulos Linfáticos Agregados/microbiologia , Fenótipo , Probióticos , Proteômica , Transdução de Sinais
4.
J Physiol ; 593(17): 3943-57, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26084409

RESUMO

Certain probiotic bacteria have been shown to reduce distension-dependent gut pain, but the mechanisms involved remain obscure. Live luminal Lactobacillus reuteri (DSM 17938) and its conditioned medium dose dependently reduced jejunal spinal nerve firing evoked by distension or capsaicin, and 80% of this response was blocked by a specific TRPV1 channel antagonist or in TRPV1 knockout mice. The specificity of DSM action on TRPV1 was further confirmed by its inhibition of capsaicin-induced intracellular calcium increases in dorsal root ganglion neurons. Another lactobacillus with ability to reduce gut pain did not modify this response. Prior feeding of rats with DSM inhibited the bradycardia induced by painful gastric distension. These results offer a system for the screening of new and improved candidate bacteria that may be useful as novel therapeutic adjuncts in gut pain. Certain bacteria exert visceral antinociceptive activity, but the mechanisms involved are not determined. Lactobacillus reuteri DSM 17938 was examined since it may be antinociceptive in children. Since transient receptor potential vanilloid 1 (TRPV1) channel activity may mediate nociceptive signals, we hypothesized that TRPV1 current is inhibited by DSM. We tested this by examining the effect of DSM on the firing frequency of spinal nerve fibres in murine jejunal mesenteric nerve bundles following serosal application of capsaicin. We also measured the effects of DSM on capsaicin-evoked increase in intracellular Ca(2+) or ionic current in dorsal root ganglion (DRG) neurons. Furthermore, we tested the in vivo antinociceptive effects of oral DSM on gastric distension in rats. Live DSM reduced the response of capsaicin- and distension-evoked firing of spinal nerve action potentials (238 ± 27.5% vs. 129 ± 17%). DSM also reduced the capsaicin-evoked TRPV1 ionic current in DRG neuronal primary culture from 83 ± 11% to 41 ± 8% of the initial response to capsaicin only. Another lactobacillus (Lactobacillus rhamnosus JB-1) with known visceral anti-nociceptive activity did not have these effects. DSM also inhibited capsaicin-evoked Ca(2+) increase in DRG neurons; an increase in Ca(2+) fluorescence intensity ratio of 2.36 ± 0.31 evoked by capsaicin was reduced to 1.25 ± 0.04. DSM releasable products (conditioned medium) mimicked DSM inhibition of capsaicin-evoked excitability. The TRPV1 antagonist 6-iodonordihydrocapsaicin or the use of TRPV1 knock-out mice revealed that TRPV1 channels mediate about 80% of the inhibitory effect of DSM on mesenteric nerve response to high intensity gut distension. Finally, feeding with DSM inhibited perception in rats of painful gastric distension. Our results identify a specific target channel for a probiotic with potential therapeutic properties.


Assuntos
Bradicardia/terapia , Jejuno/fisiologia , Limosilactobacillus reuteri , Probióticos , Gastropatias/terapia , Canais de Cátion TRPV/fisiologia , Analgesia , Animais , Bradicardia/etiologia , Bradicardia/fisiopatologia , Capsaicina , Gânglios Espinais/fisiologia , Jejuno/inervação , Masculino , Mesentério/inervação , Mesentério/fisiologia , Camundongos Knockout , Probióticos/farmacologia , Probióticos/uso terapêutico , Ratos Sprague-Dawley , Nervos Espinhais/fisiologia , Gastropatias/complicações , Gastropatias/fisiopatologia , Canais de Cátion TRPV/genética
5.
FASEB J ; 28(7): 3064-74, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24719355

RESUMO

It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse."


Assuntos
Encéfalo/fisiologia , Jejuno/fisiologia , Neurônios Aferentes/fisiologia , Receptores Nicotínicos/metabolismo , Sinapses/metabolismo , Nervo Vago/fisiologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/metabolismo , Jejuno/inervação , Jejuno/metabolismo , Jejuno/microbiologia , Lacticaseibacillus rhamnosus/metabolismo , Masculino , Camundongos , Nervo Vago/metabolismo
6.
Pflugers Arch ; 466(7): 1467-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24101295

RESUMO

Enteric sensory neurons (the AH neurons) play a role in control of gastrointestinal motor activity; AH neuron activation has been proposed to change propulsion into segmentation. We sought to find a mechanism underlying this phenomenon. We formulated the hypothesis that AH neurons increase local ICC-MP (interstitial cells of Cajal associated with the myenteric plexus) pacemaker frequency to disrupt peristalsis and promote absorption. To that end, we sought structural and physiological evidence for communication between ICC-MP and AH neurons. We designed experiments that allowed us to simultaneously activate AH neurons and observe changes in ICC calcium transients that underlie its pacemaker activity. Neurobiotin injection in AH neurons together with ICC immunohistochemistry proved the presence of multiple contacts between AH neuron varicosities and the cell bodies and processes of ICC-MP. Generating action potential activity in AH neurons led to increase in the frequency and amplitude of calcium transients underlying pacemaker activity in ICC. When no rhythmicity was seen, rhythmic calcium transients were evoked in ICC. As a control, we stimulated nitrergic S neurons, which led to reduction in ICC calcium transients. Hence, we report here the first demonstration of communication between AH neurons and ICC. The following hypothesis can now be formulated: AH neuron activation can disrupt peristalsis directed by ICC-MP slow wave activity, through initiation of a local pacemaker by increasing ICC pacemaker frequency through increasing the frequency of ICC calcium transients. Evoking new pacemakers distal to the proximal lead pacemaker will initiate both retrograde and antegrade propulsion causing back and forth movements that may disrupt peristalsis.


Assuntos
Relógios Biológicos , Células Intersticiais de Cajal/fisiologia , Intestino Delgado/inervação , Plexo Mientérico/fisiologia , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Sinalização do Cálcio , Motilidade Gastrointestinal , Intestino Delgado/fisiologia , Camundongos , Plexo Mientérico/citologia
7.
Cell Mol Life Sci ; 70(1): 55-69, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22638926

RESUMO

Recent advances in research have greatly increased our understanding of the importance of the gut microbiota. Bacterial colonization of the intestine is critical to the normal development of many aspects of physiology such as the immune and endocrine systems. It is emerging that the influence of the gut microbiota also extends to modulation of host neural development. Furthermore, the overall balance in composition of the microbiota, together with the influence of pivotal species that induce specific responses, can modulate adult neural function, peripherally and centrally. Effects of commensal gut bacteria in adult animals include protection from the central effects of infection and inflammation as well as modulation of normal behavioral responses. There is now robust evidence that gut bacteria influence the enteric nervous system, an effect that may contribute to afferent signaling to the brain. The vagus nerve has also emerged as an important means of communicating signals from gut bacteria to the CNS. Further understanding of the mechanisms underlying microbiome-gut-brain communication will provide us with new insight into the symbiotic relationship between gut microbiota and their mammalian hosts and help us identify the potential for microbial-based therapeutic strategies to aid in the treatment of mood disorders.


Assuntos
Sistema Nervoso Central/microbiologia , Sistema Nervoso Entérico/microbiologia , Intestinos/microbiologia , Modelos Biológicos , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Vida Livre de Germes , Humanos , Inflamação/microbiologia , Metagenoma , Camundongos , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Transdução de Sinais , Estresse Fisiológico , Nervo Vago/metabolismo , Nervo Vago/fisiologia
8.
Adv Exp Med Biol ; 817: 115-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24997031

RESUMO

There is now strong evidence from animal studies that gut microorganism can activate the vagus nerve and that such activation plays a critical role in mediating effects on the brain and behaviour. The vagus appears to differentiate between non-pathogenic and potentially pathogenic bacteria even in the absence of overt inflammation and vagal pathways mediate signals that can induce both anxiogenic and anxiolytic effects, depending on the nature of the stimulus. Certain vagal signals from the gut can instigate an anti-inflammatory reflex with afferent signals to the brain activating an efferent response, releasing mediators including acetylcholine that, through an interaction with immune cells, attenuates inflammation. This immunomodulatory role of the vagus nerve may also have consequences for modulation of brain function and mood.What is currently lacking are relevant data on the electrophysiology of the system. Certainly, important advances in our understanding of the gut-brain and microbiome- gut-brain axis will come from studies of how distinct microbial and nutritional stimuli activate the vagus and the nature of the signals transmitted to the brain that lead to differential changes in the neurochemistry of the brain and behaviour.Understanding the induction and transmission of signals in the vagus nerve may have important implications for the development of microbial-or nutrition based therapeutic strategies for mood disorders.


Assuntos
Encéfalo/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Intestinos/microbiologia , Microbiota/fisiologia , Nervo Vago/fisiologia , Animais , Humanos , Reflexo
9.
Biol Psychiatry ; 95(4): 310-318, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839790

RESUMO

Second only to early life, adolescence is a period of dramatic change and growth. For the developing young adult, this occurs against a backdrop of distinct environmental challenges and stressors. A significant body of work has identified an important role for the microbiota-gut-brain (MGB) axis in the development and function of the brain. Given that the MGB axis is both highly plastic during the teenage years and vulnerable to environmental stressors, more attention needs to be drawn to its potential role in the emergence of psychiatric illnesses, many of which first manifest during adolescence. Here, we review the current literature surrounding the developing microbiome, enteric nervous system, vagus nerve, and brain during the adolescent period. We also examine preclinical and clinical research involving the MGB axis during this dynamic developmental window and argue that more research is needed to further understand the role of the MGB in the pathogenesis of brain disorders. Greater understanding of the adolescent MGB axis will open up the exciting potential for new microbial-based therapeutics for the treatment of these often-refractory psychiatric illnesses.


Assuntos
Microbioma Gastrointestinal , Transtornos Mentais , Adolescente , Humanos , Eixo Encéfalo-Intestino , Microbioma Gastrointestinal/fisiologia , Encéfalo
10.
Commun Biol ; 7(1): 80, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200107

RESUMO

Vagus nerve signaling is a key component of the gut-brain axis and regulates diverse physiological processes that decline with age. Gut to brain vagus firing patterns are regulated by myenteric intrinsic primary afferent neuron (IPAN) to vagus neurotransmission. It remains unclear how IPANs or the afferent vagus age functionally. Here we identified a distinct ageing code in gut to brain neurotransmission defined by consistent differences in firing rates, burst durations, interburst and intraburst firing intervals of IPANs and the vagus, when comparing young and aged neurons. The aminosterol squalamine changed aged neurons firing patterns to a young phenotype. In contrast to young neurons, sertraline failed to increase firing rates in the aged vagus whereas squalamine was effective. These results may have implications for improved treatments involving pharmacological and electrical stimulation of the vagus for age-related mood and other disorders. For example, oral squalamine might be substituted for or added to sertraline for the aged.


Assuntos
Células Receptoras Sensoriais , Sertralina , Colestanóis , Nervo Vago
11.
Am J Physiol Gastrointest Liver Physiol ; 304(2): G211-20, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23139216

RESUMO

Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.


Assuntos
Sistema Nervoso Entérico/fisiologia , Jejuno/inervação , Jejuno/microbiologia , Lacticaseibacillus rhamnosus/fisiologia , Condução Nervosa , Probióticos , Nervo Vago/fisiologia , Potenciais de Ação , Vias Aferentes/fisiologia , Animais , Sistema Nervoso Entérico/cirurgia , Masculino , Mecanotransdução Celular , Camundongos , Pressão , Tempo de Reação , Fatores de Tempo , Vagotomia , Nervo Vago/cirurgia
12.
Am J Physiol Cell Physiol ; 302(7): C1055-69, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159087

RESUMO

Ion channels are fundamental to gastrointestinal pacemaking by interstitial cells of Cajal (ICC). Previously, we have recorded a high-conductance chloride channel (HCCC) from ICC, both in culture and in situ, associated with the myenteric plexus. The biophysical properties of the HCCC (conductance, subconductances, voltage- and time-dependent inactivation) suggest it is a member of a class called the maxi-anion channels. In this study we further investigated the properties of the HCCC in situ. Our main finding was that the HCCC is not strictly a chloride channel but has a relative sodium-chloride permeability (P(Na/Cl)) of 0.76 to 1.64 (depending on the method of measurement). Therefore, we have renamed the HCCC the "maxi-channel." A maxi-channel was also expressed by pericytes associated with the vasculature near the myenteric plexus. This had a lower P(Na/Cl) (0.33 to 0.49, depending on the method of measurement) but similar conductance (326 ± 7 vs. 316 ± 24 pS for ICC). This is the first report of cation permeability equaling anion permeability in a maxi-anion channel. As such, the properties of the maxi-channels described in this article may have implications for the maxi-anion channel field, as well as for studies of their role in ICC and pericytes.


Assuntos
Canais de Cloreto/fisiologia , Células Intersticiais de Cajal/fisiologia , Potenciais da Membrana/fisiologia , Plexo Mientérico/fisiologia , Pericitos/fisiologia , Animais , Ânions/metabolismo , Permeabilidade da Membrana Celular , Canais de Cloreto/metabolismo , Condutividade Elétrica , Células Intersticiais de Cajal/metabolismo , Camundongos , Plexo Mientérico/metabolismo , Pericitos/metabolismo , Sódio/metabolismo , Plexo Submucoso/metabolismo , Plexo Submucoso/fisiologia
13.
J Neurochem ; 121(4): 516-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22356163

RESUMO

Oxytocin (OT) is clinically important in gut motility and constitutively reduces duodenum contractility. Intrinsic primary afferent neurons (IPANs), whose physiological classification is as AH cells, are the 1st neurons of the peristaltic reflex pathway. We set out to investigate if this inhibitory effect is mediated by IPANs and to identify the ion channel(s) and intracellular signal transduction pathway that are involved in this effect. Myenteric neurons were isolated from the longitudinal muscle myenteric plexus (LMMP) preparation of rat duodenum and cultured for 16-24 h before electrophysiological recording in whole cell mode and AH cells identified by their electrophysiological characteristics. The cytoplasmic Ca²âº concentration ([Ca²âº](i) ) of isolated neurons was measured using calcium imaging. The concentration of IP(3) in the LMMP and the OT secreted from the LMMP were measured using ELISA. The oxytocin receptor (OTR) and large-conductance calcium-activated potassium (BK(Ca)) channels, as well as the expression of OT and the IPAN marker calbindin 28 K, on the myenteric plexus neurons were localized using double-immunostaining techniques. We found that administration of OT (10⁻7 to 10⁻5 M) dose dependently hyperpolarized the resting membrane potential and increased the total outward current. The OTR antagonist atosiban or the BK(Ca) channel blocker iberiotoxin (IbTX) blocked the effects of OT suggesting that the increased outward current resulted from BK(Ca) channel opening. OTR and the BK(Ca) α subunit were co-expressed on a subset of myenteric neurons at the LMMP. NS1619 (10⁻5 M, a BK(Ca) channel activator) increased the outward current similar to the effect of OT. OT administration also increased [Ca²âº](i) and the OT-evoked outward current was significantly attenuated by thapsigargin (10⁻6 M) or CdCl2. The effect of OT on the BK(Ca) current was also blocked by pre-treatment with the IP3 receptor antagonist 2-APB (10⁻4 M) or the PLC inhibitor U73122 (10⁻5 M). OT (10⁻6 M) also increased the IP3 concentration within the LMMP. Both of the spontaneous and KCl-induced secretion of OT was enhanced by atosiban. Most of OT-immunoreactive cells are also immunoreactive for calbindin 28 K. In summary, we concluded that OT hyperpolarized myenteric IPANs by activating BK(Ca) channels via the OTR-PLC-IP3-Ca²âº signal pathway. OT might modulate IPANs mediated ENS reflex by an autocrine and negative feedback manner.


Assuntos
Duodeno/inervação , Inositol 1,4,5-Trifosfato/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Plexo Mientérico/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Ocitocina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Comunicação Autócrina/efeitos dos fármacos , Separação Celular , Células Cultivadas , Duodeno/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios Aferentes/ultraestrutura , Técnicas de Patch-Clamp , Cloreto de Potássio/farmacologia , Ratos , Receptores de Ocitocina/efeitos dos fármacos , Fosfolipases Tipo C/fisiologia , Vasotocina/análogos & derivados , Vasotocina/farmacologia
14.
Curr Opin Gastroenterol ; 28(6): 557-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23010679

RESUMO

PURPOSE OF REVIEW: Interest in the microbiota-gut-brain axis is increasing apace and what was, not so long ago, a hypothetical relationship is emerging as a potentially critical factor in the regulation of intestinal and mental health. Studies are now addressing the neural circuitry and mechanisms underlying the influence of gut bacteria on the central nervous system and behavior. RECENT FINDINGS: Gut bacteria influence development of the central nervous systems (CNS) and stress responses. In adult animals, the overall composition of the microbiota or exposure to specific bacterial strains can modulate neural function, peripherally and centrally. Gut bacteria can provide protection from the central effects of infection and inflammation as well as modulate normal behavioral responses. Behavioral effects described to date are largely related to stress and anxiety and an altered hypothalamus-pituitary-adrenal axis response is a common observation in many model systems. The vagus nerve has also emerged as an important means of communicating signals from gut microbes to the CNS. SUMMARY: Studies of microbiota-gut-brain communication are providing us with a deeper understanding of the relationship between the gut bacteria and their hosts while also suggesting the potential for microbial-based therapeutic strategies that may aid in the treatment of mood disorders.


Assuntos
Comportamento/fisiologia , Sistema Nervoso Central/fisiologia , Trato Gastrointestinal/microbiologia , Transtornos Mentais/fisiopatologia , Metagenoma/fisiologia , Sistema Nervoso Periférico/fisiologia , Animais , Humanos
15.
Front Vet Sci ; 9: 855261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478602

RESUMO

It is currently unclear whether potential probiotics such as lactic acid bacteria could affect behavioral problems in birds. To this end, we assessed whether a supplementation of Lactobacillus rhamnosus JB-1 can reduce stress-induced severe feather pecking (SFP), feather damage and fearfulness in adult birds kept for egg laying. In parallel, we assessed SFP genotypic and phenotypic-related immune responses and aromatic amino acid status linked to neurotransmitter production. Social stress aggravated plumage damage, while L. rhamnosus treatment improved the birds' feather cover in non-stressed birds, but did not impact fearfulness. Our data demonstrate the significant impact of L. rhamnosus supplementation on the immune system. L. rhamnosus supplementation induced immunosuppressive regulatory T cells and cytotoxic T cells in both the cecal tonsils and the spleen. Birds exhibiting the SFP phenotype possessed lower levels of cecal tonsils regulatory T cells, splenic T helper cells and a lower TRP:(PHE+TYR). Together, these results suggest that bacteria may have beneficial effects on the avian immune response and may be useful therapeutic adjuncts to counteract SFP and plumage damage, thus increasing animal health and welfare.

16.
FASEB J ; 24(10): 4078-88, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20519636

RESUMO

Gut commensals modulate host immune, endocrine, and metabolic functions. They also affect peripheral and central neural reflexes and function. We have previously shown that daily ingestion of Lactobacillus reuteri (LR) for 9 d inhibits the pseudoaffective cardiac response and spinal single-fiber discharge evoked by visceral distension, and decreases intestinal motility and myenteric AH cell slow afterhyperpolarization (sAHP) by inhibiting a Ca-activated K (IK(Ca)) channel. We tested whether luminal LR could acutely decrease motility in an ex vivo perfusion model of naive Balb/c jejunum. Live LR dose dependently decreased motor complex pressure wave amplitudes with 9- to 16-min onset latency and an IC(50) of 5 × 10(7) cells/ml Krebs. Heat-killed LR or another live commensal, Lactobacillus salivarius, were without effect. The IK(Ca) channel blocker TRAM-34, but neither the opener (DCEBIO) nor the hyperpolarization-activated cationic channel inhibitor ZD7288 (5 µM) (or TTX 1 µM), mimicked the LR effect on motility acutely ex vivo. We provide evidence for a rapid, strain-specific, dose-dependent action of a live Lactobacillus on small intestinal motility reflexes that recapitulates the long-term effects of LR ingestion. These observations may be useful as a first step to unraveling the pathways involved in bacteria to the nervous system communication.


Assuntos
Motilidade Gastrointestinal , Jejuno/fisiologia , Lactobacillus , Probióticos , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C
17.
Sci Rep ; 11(1): 19538, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599202

RESUMO

In mammals, early-life probiotic supplementation is a promising tool for preventing unfavourable, gut microbiome-related behavioural, immunological, and aromatic amino acid alterations later in life. In laying hens, feather-pecking behaviour is proposed to be a consequence of gut-brain axis dysregulation. Lactobacillus rhamnosus decreases stress-induced severe feather pecking in adult hens, but whether its effect in pullets is more robust is unknown. Consequently, we investigated whether early-life, oral supplementation with a single Lactobacillus rhamnosus strain can prevent stress-induced feather-pecking behaviour in chickens. To this end, we monitored both the short- and long-term effects of the probiotic supplement on behaviour and related physiological parameters. We hypothesized that L. rhamnosus would reduce pecking behaviour by modulating the biological pathways associated with this detrimental behaviour, namely aromatic amino acid turnover linked to neurotransmitter production and stress-related immune responses. We report that stress decreased the proportion of cytotoxic T cells in the tonsils (P = 0.047). Counteracting this T cell depression, birds receiving the L. rhamnosus supplementation significantly increased all T lymphocyte subset proportions (P < 0.05). Both phenotypic and genotypic feather peckers had lower plasma tryptophan concentrations compared to their non-pecking counterparts. The probiotic supplement caused a short-term increase in plasma tryptophan (P < 0.001) and the TRP:(PHE + TYR) ratio (P < 0.001). The administration of stressors did not significantly increase feather pecking in pullets, an observation consistent with the age-dependent onset of pecking behaviour. Despite minimal changes to behaviour, our data demonstrate the impact of L. rhamnosus supplementation on the immune system and the turnover of the serotonin precursor tryptophan. Our findings indicate that L. rhamnosus exerts a transient, beneficial effect on the immune response and tryptophan catabolism in pullets.


Assuntos
Galinhas , Interações entre Hospedeiro e Microrganismos , Imunidade , Lacticaseibacillus rhamnosus/fisiologia , Probióticos , Triptofano/metabolismo , Fatores Etários , Animais , Comportamento Animal , Biomarcadores , Aves , Estudos de Associação Genética , Patrimônio Genético , Microbiota , Característica Quantitativa Herdável , Estresse Fisiológico/imunologia , Triptofano/sangue
18.
Sci Rep ; 11(1): 21130, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702901

RESUMO

The vagus nerve relays mood-altering signals originating in the gut lumen to the brain. In mice, an intact vagus is required to mediate the behavioural effects of both intraluminally applied selective serotonin reuptake inhibitors and a strain of Lactobacillus with antidepressant-like activity. Similarly, the prodepressant effect of lipopolysaccharide is vagus nerve dependent. Single vagal fibres are broadly tuned to respond by excitation to both anti- and prodepressant agents, but it remains unclear how neural responses encode behaviour-specific information. Here we demonstrate using ex vivo experiments that for single vagal fibres within the mesenteric neurovascular bundle supplying the mouse small intestine, a unique neural firing pattern code is common to both chemical and bacterial vagus-dependent antidepressant luminal stimuli. This code is qualitatively and statistically discernible from that evoked by lipopolysaccharide, a non-vagus-dependent antidepressant or control non-antidepressant Lactobacillus strain and are not affected by sex status. We found that all vagus dependent antidepressants evoked a decrease in mean spike interval, increase in spike burst duration, decrease in gap duration between bursts and increase in intra-burst spike intervals. Our results offer a novel neuronal electrical perspective as one explanation for mechanisms of action of gut-derived vagal dependent antidepressants. We expect that our ex vivo individual vagal fibre recording model will improve the design and operation of new, extant electroceutical vagal stimulation devices currently used to treat major depression. Furthermore, use of this vagal antidepressant code should provide a valuable screening tool for novel potential oral antidepressant candidates in preclinical animal models.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antidepressivos , Lactobacillus/química , Inibidores Seletivos de Recaptação de Serotonina , Nervo Vago/fisiopatologia , Animais , Antidepressivos/química , Antidepressivos/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
19.
Sci Rep ; 11(1): 17119, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429482

RESUMO

Feather pecking (FP) is a stress-induced neuropsychological disorder of birds. Intestinal dysbiosis and inflammation are common traits of these disorders. FP is, therefore, proposed to be a behavioral consequence of dysregulated communication between the gut and the brain. Probiotic bacteria are known to favorably modulate the gut microbiome and hence the neurochemical and immune components of the gut-brain axis. Consequently, probiotic supplementation represents a promising new therapeutic to mitigate widespread FP in domestic chickens. We monitored FP, gut microbiota composition, immune markers, and amino acids related to the production of neurochemicals in chickens supplemented with Lactobacillus rhamnosus or a placebo. Data demonstrate that, when stressed, the incidence of FP increased significantly; however, L. rhamnosus prevented this increase. L. rhamnosus supplementation showed a strong immunological effect by increasing the regulatory T cell population of the spleen and the cecal tonsils, in addition to limiting cecal microbiota dysbiosis. Despite minimal changes in aromatic amino acid levels, data suggest that catecholaminergic circuits may be an interesting target for further studies. Overall, our findings provide the first data supporting the use of a single-strain probiotic to reduce stress-induced FP in chickens and promise to improve domestic birds' welfare.


Assuntos
Galinhas/microbiologia , Lacticaseibacillus rhamnosus/patogenicidade , Doenças das Aves Domésticas/microbiologia , Probióticos/uso terapêutico , Estresse Psicológico/microbiologia , Animais , Catecolaminas/metabolismo , Galinhas/fisiologia , Microbioma Gastrointestinal , Tonsila Palatina/imunologia , Doenças das Aves Domésticas/terapia , Probióticos/administração & dosagem , Baço/imunologia , Estresse Psicológico/terapia
20.
Neuropharmacology ; 170: 108067, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224131

RESUMO

There is accumulating evidence that certain gut microbes modulate brain chemistry and have antidepressant-like behavioural effects. However, it is unclear which brain regions respond to bacteria-derived signals or how signals are transmitted to distinct regions. We investigated the role of the vagus in mediating neuronal activation following oral treatment with Lactobacillus rhamnosus (JB-1). Male Balb/c mice were orally administered a single dose of saline or a live or heat-killed preparation of a physiologically active bacterial strain, Lactobacillus rhamnosus (JB-1). 165 min later, c-Fos immunoreactivity in the brain was mapped, and mesenteric vagal afferent fibre firing was recorded. Mice also underwent sub-diaphragmatic vagotomy to investigate whether severing the vagus prevented JB-1-induced c-Fos expression. Finally, we examined the ΔFosB response following acute versus chronic bacterial treatment. While a single exposure to live and heat-killed bacteria altered vagal activity, only live treatment induced rapid neural activation in widespread but distinct brain regions, as assessed by c-Fos expression. Sub-diaphragmatic vagotomy abolished c-Fos immunoreactivity in most, but not all, previously responsive regions. Chronic, but not acute treatment induced a distinct pattern of ΔFosB expression, including in previously unresponsive brain regions. These data identify that specific brain regions respond rapidly to gut microbes via vagal-dependent and independent pathways, and demonstrate that acute versus long-term exposure is associated with differential responses in distinct brain regions.


Assuntos
Encéfalo/metabolismo , Encéfalo/microbiologia , Lacticaseibacillus rhamnosus/metabolismo , Neurônios/metabolismo , Neurônios/microbiologia , Nervo Vago/metabolismo , Nervo Vago/microbiologia , Administração Oral , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vagotomia/tendências , Nervo Vago/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA