Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genes Cells ; 25(10): 695-702, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32888368

RESUMO

Algae accumulate large amounts of lipids produced by photosynthesis, and these lipids are expected to be utilized as feedstocks for sustainable new energies, known as biodiesels. Nannochloropsis species are eukaryotic microalgae that produce high levels of lipids. However, since the production costs of algal biodiesels are higher than those of fossil fuels, the improved productivity of algal lipids by molecular breeding of algae is required for practical use. In the present study, we developed a highly efficient genome-editing system involving Platinum transcription activator-like effector nucleases (TALENs) in Nannochloropsis oceanica. Platinum TALENs codon-optimized for N. oceanica were synthesized, and their DNA-binding activity was confirmed by single-strand annealing assays in human HEK293T cells. All-in-one expression vectors for Platinum TALEN targeting the nitrate reductase gene, NoNR, and acyltransferase gene, LPAT1, were transfected into Nannochloropsis species. The introduction of each Platinum TALEN revealed high genome-editing efficiency with no detectable off-target mutations at the candidate sites in N. oceanica. By simultaneously introducing TALENs targeting two genes, we obtained double mutant strains. The loss-of-function phenotype of NoNR was also confirmed. These findings will provide an essential technology for molecular breeding in Nannochloropsis species.


Assuntos
Edição de Genes/métodos , Microalgas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Microalgas/metabolismo , Plasmídeos/genética , Estramenópilas/genética , Estramenópilas/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Transfecção/métodos
2.
FEMS Yeast Res ; 18(1)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293994

RESUMO

Sec2 activates Sec4 Rab GTPase as a guanine nucleotide exchange factor for the recruitment of downstream effectors to facilitate tethering and fusion of post-Golgi vesicles at the plasma membrane. During the meiosis and sporulation of budding yeast, post-Golgi vesicles are transported to and fused at the spindle pole body (SPB) to form a de novo membrane, called the prospore membrane. Previous studies have revealed the role of the SPB outer surface called the meiotic outer plaque (MOP) in docking and fusion of post-Golgi vesicles. However, the upstream molecular machinery for post-Golgi vesicular fusion that facilitates prospore membrane formation remains enigmatic. Here, we demonstrate that the GTP exchange factor for Sec4, Sec2, participates in the formation of the prospore membrane. A conditional mutant in which the SEC2 expression is shut off during sporulation showed sporulation defects. Inactivation of Sec2 caused Sec4 targeting defects along the prospore membranes, thereby causing insufficient targeting of downstream effectors and cargo proteins to the prospore membrane. These results suggest that the activation of Sec4 by Sec2 is required for the efficient supply of post-Golgi vesicles to the prospore membrane and thus for prospore membrane formation/extension and subsequent deposition of spore wall materials.


Assuntos
Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Biomarcadores , Imunofluorescência , Regulação Fúngica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Fenótipo , Domínios Proteicos , Transporte Proteico , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Esporos , Proteínas rab de Ligação ao GTP/genética
3.
J Biol Chem ; 287(21): 17415-17424, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22447934

RESUMO

Saccharomyces cerevisiae Kre6 is a type II membrane protein essential for cell wall ß-1,6-glucan synthesis. Recently we reported that the majority of Kre6 is in the endoplasmic reticulum (ER), but a significant portion of Kre6 is found in the plasma membrane of buds, and this polarized appearance of Kre6 is required for ß-1,6-glucan synthesis. An essential membrane protein, Keg1, and ER chaperon Rot1 bind to Kre6. In this study we found that in mutant keg1-1 cells, accumulation of Kre6 at the buds is diminished, binding of Kre6 to Keg1 is decreased, and Kre6 becomes susceptible to ER-associated degradation (ERAD), which suggests Keg1 participates in folding and transport of Kre6. All mutants of the calnexin cycle member homologues (cwh41, rot2, kre5, and cne1) showed defects in ß-1,6-glucan synthesis, although the calnexin chaperon system is considered not functional in yeast. We found synthetic defects between them and keg1-1, and Cne1 co-immunoprecipitated with Keg1 and Kre6. A stronger binding of Cne1 to Kre6 was detected when two glucosidases (Cwh41 and Rot2) that remove glucose on N-glycan were functional. Skn1, a Kre6 homologue, was not detected by immunofluorescence in the wild type yeast, but in kre6Δ cells it became detectable and behaved like Kre6. In conclusion, the action of multiple ER chaperon-like proteins is required for proper folding and localization of Kre6 and probably Skn1 to function in ß-1,6-glucan synthesis.


Assuntos
Parede Celular/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Parede Celular/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 286(9): 7429-38, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21193403

RESUMO

Saccharomyces cerevisiae Kre6 is a type II membrane protein with amino acid sequence homology with glycoside hydrolase and is essential for ß-1,6-glucan synthesis as revealed by the mutant phenotype, but its biochemical function is still unknown. The localization of Kre6, determined by epitope tagging, is a matter of debate. We raised anti-Kre6 rabbit antiserum and examined the localization of Kre6 and its tagged protein by immunofluorescence microscopy, subcellular fractionation in sucrose density gradients, and immunoelectron microscopy. Integration of the results indicates that the majority of Kre6 is in the endoplasmic reticulum; however, a small but significant portion is also present in the secretory vesicle-like compartments and plasma membrane. Kre6 in the latter compartments is observed as strong signals that accumulate at the sites of polarized growth by immunofluorescence. The truncated Kre6 without the N-terminal 230-amino acid cytoplasmic region did not show this polarized accumulation and had a severe defect in ß-1,6-glucan synthesis. This is the first evidence of a ß-1,6-glucan-related protein showing the polarized membrane localization that correlates with its biological function.


Assuntos
Parede Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Centrifugação com Gradiente de Concentração , Retículo Endoplasmático/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Dados de Sequência Molecular , Transporte Proteico/fisiologia , Coelhos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/imunologia , Vesículas Secretórias/metabolismo
5.
Sci Rep ; 12(1): 2480, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169205

RESUMO

Algal lipids are expected to become a basis for sustainable fuels because of the highly efficient lipid production by photosynthesis accompanied by carbon dioxide assimilation. Molecular breeding of microalgae has been studied to improve algal lipid production, but the resultant gene-modified algae containing transgenes are rarely used for outdoor culture because the use of genetically modified organisms (GMOs) is strictly restricted under biocontainment regulations. Recently, it was reported that plasmids containing yeast centromere and autonomous replication sequence (CEN/ARS) behaved as episomes in Nannochloropsis species. We previously reported that the Platinum TALEN (PtTALEN) system exhibited high activity in Nannochloropsis oceanica. Therefore, we attempted to develop a genome editing system in which the expression vectors for PtTALEN can be removed from host cells after introduction of mutations. Using all-in-one PtTALEN plasmids containing CEN/ARS, targeted mutations and removal of all-in-one vectors were observed in N. oceanica, suggesting that our all-in-one PtTALEN vectors enable the construction of mutated N. oceanica without any transgenes. This system will be a feasible method for constructing non-GMO high-performance algae.


Assuntos
Centrômero/genética , Replicação do DNA/genética , Edição de Genes/métodos , Vetores Genéticos , Microalgas/genética , Microalgas/metabolismo , Análise de Sequência de DNA/métodos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Dióxido de Carbono/metabolismo , Estudos de Viabilidade , Metabolismo dos Lipídeos/genética , Organismos Geneticamente Modificados , Plasmídeos , Transgenes
6.
J Steroid Biochem Mol Biol ; 122(4): 253-63, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20554032

RESUMO

In previous studies, we identified two major Comamonas testosteroni TA441 gene clusters involved in steroid degradation. Because most of the genes included in these clusters were revealed to be involved in degradation of basic steroidal structures and a few were suggested to be involved in the degradation of modified steroid compounds, we investigated the spectrum of steroid compounds degradable for TA441 to better identify the genes involved in steroid degradation. TA441 degraded testosterone, progesterone, epiandrosterone, dehydroepiandrosterone, cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. The results suggested TA441 having 3α-dehydrogenase and Δ4(5)-isomerase, and 3ß-,17ß-dehydrogenase gene, we isolated these genes, all of which had high homology to the corresponding genes of C. testosteroni ATCC11996. Results of gene-disruption experiments indicated that 3ß,17ß-dehydrogenase is a unique 3ß-dehydrogenase which also acts as a 17ß-dehydrogenase in TA441, and there will be at least one more enzyme with 17ß-dehydrogenating activity. The 3α-dehydrogenase and Δ4(5)-isomerase genes were found adjacent in the DNA region between the two main steroid degradation gene clusters together with a number of other genes that may be involved in steroid degradation, suggesting the presence of a steroid degradation gene hot spot over 100 kb in size in TA441.


Assuntos
3-Hidroxiesteroide Desidrogenases/genética , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/genética , Comamonas testosteroni/enzimologia , Comamonas testosteroni/genética , Genes Bacterianos , Esteroide Isomerases/genética , Esteroides/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/metabolismo , Cromatografia Líquida de Alta Pressão , Família Multigênica , Mutação , Esteroide Isomerases/metabolismo
7.
J Biol Chem ; 282(47): 34315-24, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17893149

RESUMO

KEG1/YFR042w of Saccharomyces cerevisiae is an essential gene that encodes a 200-amino acid polypeptide with four predicted transmembrane domains. The green fluorescent protein- or Myc(6)-tagged Keg1 protein showed the typical characteristics of an integral membrane protein and was found in the endoplasmic reticulum by fluorescence imaging. Immunoprecipitation from the Triton X-100-solubilized cell lysate revealed that Keg1 binds to Kre6, which has been known to participate in beta-1,6-glucan synthesis. To analyze the essential function of Keg1 in more detail, we constructed temperature-sensitive mutant alleles by error-prone polymerase chain reaction. The keg1-1 mutant cells showed a common phenotype with Deltakre6 mutant including hypersensitivity to Calcofluor white, reduced sensitivity to the K1 killer toxin, and reduced content of beta-1,6-glucan in the cell wall. These results suggest that Keg1 and Kre6 have a cooperative role in beta-1,6-glucan synthesis in S. cerevisiae.


Assuntos
Parede Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/metabolismo , Benzenossulfonatos/farmacologia , Parede Celular/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Retículo Endoplasmático/genética , Corantes Fluorescentes/farmacologia , Fatores Matadores de Levedura , Proteínas de Membrana/genética , Mutação , Micotoxinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Appl Environ Microbiol ; 71(9): 5275-81, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16151114

RESUMO

Comamonas testosteroni TA441 utilizes testosterone via aromatization of the A ring followed by meta-cleavage of the ring. The product of the meta-cleavage reaction, 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid, is degraded by a hydrolase, TesD. We directly isolated and identified two products of TesD as 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and (2Z,4Z)-2-hydroxyhexa-2,4-dienoic acid. The latter was a pure 4Z isomer. 2-Hydroxyhexa-2,4-dienoic acid was converted by a hydratase, TesE, and the product isolated from the reaction solution was identified as 2-hydroxy-4-hex-2-enolactone, indicating the direct product of TesE to be 4-hydroxy-2-oxohexanoic acid.


Assuntos
Proteínas de Bactérias/metabolismo , Comamonas testosteroni/enzimologia , Hidrolases/metabolismo , Testosterona/metabolismo , Proteínas de Bactérias/genética , Caproatos/química , Caproatos/metabolismo , Comamonas testosteroni/genética , Comamonas testosteroni/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Hidrolases/genética , Hidroxitestosteronas/química , Hidroxitestosteronas/metabolismo , Espectroscopia de Ressonância Magnética
9.
Biochem Biophys Res Commun ; 324(2): 597-604, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15474469

RESUMO

Steroid degradation genes of Comamonas testosteroni TA441 are encoded in at least two gene clusters: one containing the meta-cleavage enzyme gene tesB and ORF1, 2, 3; and another consisting of ORF18, 17, tesI, H, A2, and tesA1, D, E, F, G (tesA2 to ORF18 and tesA1 to tesG are encoded in opposite directions). Analysis of transposon mutants with low steroid degradation revealed 13 ORFs and a gene (ORF4, 5, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, and tesR) involved in steroid degradation in the downstream region of ORF3. TesR, which is almost identical to that of TeiR, a positive regulator of Delta1-dehydrogenase (corresponds to TesH in TA441) and 3alpha-dehydrogenase (currently not identified in TA441), in C. testosteroni ATCC11996 (Pruneda-Paz, 2004), was shown to be necessary for induction of the steroid degradation gene clusters identified in TA441, tesB to tesR, tesA1 to tesG, and tesA2 to ORF18. At least some of the ORFs from ORF3 to ORF33 were suggested to be involved in 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation.


Assuntos
Proteínas de Bactérias/genética , Comamonas testosteroni/genética , Genes Bacterianos , Família Multigênica , Oxirredutases/genética , Esteroides/metabolismo , Fatores de Transcrição/genética , Northern Blotting , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Elementos de DNA Transponíveis , Escherichia coli/metabolismo , Modelos Químicos , Modelos Genéticos , Mutagênese , Mutação , Fases de Leitura Aberta , Plasmídeos/metabolismo , Temperatura , Testosterona/metabolismo , Fatores de Tempo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA