Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(11): 4854-4868, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37842917

RESUMO

Herein, we report the formation of drug delivery systems from original thermoresponsive block copolymers containing lipid-based segments. Two acrylate monomers derived from palmitic- or oleic-acid-based diacylglycerols (DAGs) were synthesized and polymerized by the reversible addition-fragmentation chain transfer (RAFT) method. Well-defined DAG-based polymers with targeted molar masses and narrow molar mass distributions were next used as macro-chain transfer agents (macro-CTAs) for the polymerization of N-isopropylacrylamide (NIPAAm) or N-vinylcaprolactam (NVCL). The obtained amphiphilic block copolymers were formed into polymeric nanoparticles (PNPs) with and without encapsulated doxorubicin and characterized. Their biological assessment indicated appropriate cytocompatibility with the representatives of normal cells. Furthermore, compared to the free drug, increased cytotoxicity and apoptosis or necrosis induction in breast cancer cells was documented, including a highly aggressive and invasive triple-negative MDA-MB-231 cell line.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Diglicerídeos , Doxorrubicina/farmacologia , Polímeros/farmacologia , Sistemas de Liberação de Medicamentos/métodos
2.
Macromol Rapid Commun ; 44(4): e2200729, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36443826

RESUMO

Photo-iniferter reversible addition-fragmentation chain transfer (PI-RAFT) polymerization of N-vinylformamide (NVF) is demonstrated by using purple light. PNVFs with predetermined molar masses and narrow molar mass distributions are obtained. High RAFT chain-end fidelity is confirmed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS), and chain extension experiment. To demonstrate the potential of this approach, an original poly(N-vinylpyrrolidone)-b-poly(N-vinylformamide) (PVP-b-PNVF) diblock copolymer is synthesized and characterized by aqueous size-exclusion chromatography (SEC), asymmetric flow field-flow fractionation (A4F), and 1 H diffusion-ordered spectroscopy nuclear magnetic resonance (1 H DOSY NMR). Finally, selective hydrolysis of PNVF block to corresponding pH-responsive poly(N-vinylpyrrolidone)-b-poly(N-vinylformamide) (PVP-b-PVAm) is performed.


Assuntos
Polivinil , Polimerização , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Nanoscale ; 14(6): 2238-2247, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35080566

RESUMO

We describe here a new methodology for the synthesis of well-defined phosphonic acid-terminated poly(ethylene glycol) (PEG) and RAFT-derived poly(N-vinylpyrrolidone) (PVP) and poly(N-vinylcaprolactam) (PVCL) by amine-thiol-ene and amine-thiol-thiosulfonate conjugation strategies using a phosphonated thiolactone and their use to prepare stable, water-dispersible multifunctional upconverting luminescent nanohybrids.

4.
Pharmaceutics ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34683881

RESUMO

Buccal films are recognized as easily applicable, microbiologically stable drug dosage forms with good retentivity at the mucosa intended for the therapy of oromucosal conditions, especially infectious diseases. Multilayer films composed of layers of oppositely charged polymers separated by ionically interacting polymeric chains creating polyelectrolyte complexes represent very interesting and relatively poorly explored area. We aimed to develop the antifungal multilayer systems composed of cationic chitosan and anionic pectin as potential platforms for controlled delivery of clotrimazole. The systems were pharmaceutically characterized with regard to inter alia their release kinetics under different pH conditions, physicomechanical, or mucoadhesion properties with using an animal model of the buccal mucosa. The antifungal activity against selected Candida sp. and potential cytotoxicity with regard to human gingival fibroblasts were also evaluated. Interactions between polyions were characterized with Fourier transform infrared spectroscopy. Different clotrimazole distribution in the films layers highly affected their in vitro dissolution profile. The designed films were recognized as intelligent pH-responsive systems with strong antifungal effect and satisfactory safety profile. As addition of chitosan resulted in the improved antifungal behavior of the drug, the potential utilization of the films in resistant cases of oral candidiasis might be worth of further exploration.

5.
Int J Nanomedicine ; 15: 7263-7278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061380

RESUMO

PURPOSE: Efficient intracellular delivery of a therapeutic compound is an important feature of smart drug delivery systems (SDDS). Modification of a carrier structure with a cell-penetrating ligand, ie, cholesterol moiety, is a strategy to improve cellular uptake. Cholesterol end-capped poly(N-isopropylacrylamide)s offer a promising foundation for the design of efficient thermoresponsive drug delivery systems. METHODS: A series of cholesterol end-capped poly(N-isopropylacrylamide)s (PNIPAAm) with number-average molar masses ranging from 3200 to 11000 g·mol-1 were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from original xanthate-functionalized cholesterol and self-assembled into micelles. The physicochemical characteristics and cytotoxicity of cholesterol end-capped poly(N-isopropylacrylamide)s have been thoroughly investigated. RESULTS: Phase transition temperature dependence on the molecular weight and hydrophilic/hydrophobic ratio in the polymers were observed in water. Biological test results showed that the obtained materials, both in disordered and micellar form, are non-hemolytic, highly compatible with fibroblasts, and toxic to glioblastoma cells. It was found that the polymer termini dictates the mode of action of the system. CONCLUSION: The cholesteryl moiety acts as a cell-penetrating agent, which enables disruption of the plasma membrane and in effect leads to the restriction of the tumor growth. Cholesterol end-capped PNIPAAm showing in vitro anticancer efficacy can be developed not only as drug carriers but also as components of combined/synergistic therapy.


Assuntos
Resinas Acrílicas/química , Antineoplásicos/farmacologia , Colesterol/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Adulto , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Portadores de Fármacos/efeitos adversos , Fibroblastos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Peso Molecular , Transição de Fase , Polimerização , Polímeros/química , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA