Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 28(1): 181-201, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26715648

RESUMO

Group A1 heat shock transcription factors (HsfA1s) are the master regulators of the heat stress response (HSR) in plants. Upon heat shock, HsfA1s trigger a transcriptional cascade that is composed of many transcription factors. Despite the importance of HsfA1s and their downstream transcriptional cascade in the acquisition of thermotolerance in plants, the molecular basis of their activation remains poorly understood. Here, domain analysis of HsfA1d, one of several HsfA1s in Arabidopsis thaliana, demonstrated that the central region of HsfA1d is a key regulatory domain that represses HsfA1d transactivation activity through interaction with HEAT SHOCK PROTEIN70 (HSP70) and HSP90. We designated this region as the temperature-dependent repression (TDR) domain. We found that HSP70 dissociates from HsfA1d in response to heat shock and that the dissociation is likely regulated by an as yet unknown activation mechanism, such as HsfA1d phosphorylation. Overexpression of constitutively active HsfA1d that lacked the TDR domain induced expression of heat shock proteins in the absence of heat stress, thereby conferring potent thermotolerance on the overexpressors. However, transcriptome analysis of the overexpressors demonstrated that the constitutively active HsfA1d could not trigger the complete transcriptional cascade under normal conditions, thereby indicating that other factors are necessary to fully induce the HSR. These complex regulatory mechanisms related to the transcriptional cascade may enable plants to respond resiliently to various heat stress conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Motivos de Aminoácidos , Proteínas de Arabidopsis/química , Cromatografia Líquida , Sequência Conservada , Genes de Plantas , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Protoplastos/metabolismo , Deleção de Sequência/genética , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Fatores de Transcrição/química , Transcriptoma/genética
2.
Plant Cell ; 26(12): 4954-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25490919

RESUMO

DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) is a key transcription factor for drought and heat stress tolerance in Arabidopsis thaliana. DREB2A induces the expression of dehydration- and heat stress-inducible genes under the corresponding stress conditions. Target gene selectivity is assumed to require stress-specific posttranslational regulation, but the mechanisms of this process are not yet understood. Here, we identified DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1), which was previously annotated as NUCLEAR FACTOR Y, SUBUNIT C10 (NF-YC10), as a DREB2A interactor, through a yeast two-hybrid screen. The overexpression of DPB3-1 in Arabidopsis enhanced the expression of a subset of heat stress-inducible DREB2A target genes but did not affect dehydration-inducible genes. Similarly, the depletion of DPB3-1 expression resulted in reduced expression of heat stress-inducible genes. Interaction and expression pattern analyses suggested the existence of a trimer comprising NF-YA2, NF-YB3, and DPB3-1 that could synergistically activate a promoter of the heat stress-inducible gene with DREB2A in protoplasts. These results suggest that DPB3-1 could form a transcriptional complex with NF-YA and NF-YB subunits and that the identified trimer enhances heat stress-inducible gene expression during heat stress responses in cooperation with DREB2A. We propose that the identified trimer contributes to the target gene selectivity of DREB2A under heat stress conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , DNA Polimerase II/fisiologia , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Técnicas de Silenciamento de Genes , Regiões Promotoras Genéticas , Protoplastos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Plant Physiol ; 161(1): 346-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23151346

RESUMO

Soybean (Glycine max) is an important crop around the world. Abiotic stress conditions, such as drought and heat, adversely affect its survival, growth, and production. The DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2 (DREB2) group includes transcription factors that contribute to drought and heat stress tolerance by activating transcription through the cis-element dehydration-responsive element (DRE) in response to these stress stimuli. Two modes of regulation, transcriptional and posttranslational, are important for the activation of gene expression by DREB2A in Arabidopsis (Arabidopsis thaliana). However, the regulatory system of DREB2 in soybean is not clear. We identified a new soybean DREB2 gene, GmDREB2A;2, that was highly induced not only by dehydration and heat but also by low temperature. GmDREB2A;2 exhibited a high transactivation activity via DRE and has a serine/threonine-rich region, which corresponds to a negative regulatory domain of DREB2A that is involved in its posttranslational regulation, including destabilization. Despite the partial similarity between these sequences, the activity and stability of the GmDREB2A;2 protein were enhanced by removal of the serine/threonine-rich region in both Arabidopsis and soybean protoplasts, suggestive of a conserved regulatory mechanism that involves the recognition of serine/threonine-rich sequences with a specific pattern. The heterologous expression of GmDREB2A;2 in Arabidopsis induced DRE-regulated stress-inducible genes and improved stress tolerance. However, there were variations in the growth phenotypes of the transgenic Arabidopsis, the induced genes, and their induction ratios between GmDREB2A;2 and DREB2A. Therefore, the basic function and regulatory machinery of DREB2 have been maintained between Arabidopsis and soybean, although differentiation has also occurred.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Processamento de Proteína Pós-Traducional , Proteínas de Soja/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Secas , Genes de Plantas , Germinação , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Estabilidade Proteica , Homologia de Sequência , Serina/metabolismo , Proteínas de Soja/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Estresse Fisiológico , Treonina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
4.
Plant J ; 70(4): 599-613, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22225700

RESUMO

Membrane-anchored receptor-like protein kinases (RLKs) recognize extracellular signals at the cell surface and activate the downstream signaling pathway by phosphorylating specific target proteins. We analyzed a receptor-like cytosolic kinase (RLCK) gene, ARCK1, whose expression was induced by abiotic stress. ARCK1 belongs to the cysteine-rich repeat (CRR) RLK sub-family and encodes a cytosolic protein kinase. The arck1 mutant showed higher sensitivity than the wild-type to ABA and osmotic stress during the post-germinative growth phase. CRK36, an abiotic stress-inducible RLK belonging to the CRR RLK sub-family, was screened as a potential interacting factor with ARCK1 by co-expression analyses and a yeast two-hybrid system. CRK36 physically interacted with ARCK1 in plant cells, and the kinase domain of CRK36 phosphorylated ARCK1 in vitro. We generated CRK36 RNAi transgenic plants, and found that transgenic plants with suppressed CRK36 expression showed higher sensitivity than arck1-2 to ABA and osmotic stress during the post-germinative growth phase. Microarray analysis using CRK36 RNAi plants revealed that suppression of CRK36 up-regulates several ABA-responsive genes, such as LEA genes, oleosin, ABI4 and ABI5. These results suggest that CRK36 and ARCK1 form a complex and negatively control ABA and osmotic stress signal transduction.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Quinases/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Western Blotting , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Quinases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais/genética , Cloreto de Sódio/farmacologia , Técnicas do Sistema de Duplo-Híbrido , Água/farmacologia
5.
Mol Plant ; 6(2): 411-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23393165

RESUMO

Thellungiella salsuginea (formerly T. halophila), a species closely related to Arabidopsis (Arabidopsis thaliana), is tolerant not only to high salt levels, but also to chilling, freezing, and ozone. Here, we report that T. salsuginea also shows greater heat tolerance than Arabidopsis. We identified T. salsuginea HsfA1d (TsHsfA1d) as a gene that can confer marked heat tolerance on Arabidopsis. TsHsfA1d was identified via Full-length cDNA Over-eXpressing gene (FOX) hunting from among a collection of heat-stress-related T. salsuginea cDNAs. Transgenic Arabidopsis overexpressing TsHsfA1d showed constitutive up-regulation of many genes in the Arabidopsis AtHsfA1 regulon under normal growth temperature. In Arabidopsis mesophyll protoplasts, TsHsfA1d was localized in both the nucleus and the cytoplasm. TsHsfA1d also interacted with AtHSP90, which negatively regulates AtHsfA1s by forming HsfA1-HSP90 complexes in the cytoplasm. It is likely that the partial nuclear localization of TsHsfA1d induced the expression of the AtHsfA1d regulon in the transgenic plants at normal temperature. We also discovered that transgenic Arabidopsis plants overexpressing AtHsfA1d were more heat-tolerant than wild-type plants and up-regulated the expression of the HsfA1d regulon, as was observed in TsHsfA1d-overexpressing plants. We propose that the products of both TsHsfA1d and AtHsfA1d function as positive regulators of Arabidopsis heat-stress response and would be useful for the improvement of heat-stress tolerance in other plants.


Assuntos
DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Temperatura Alta , Mostardeira/genética , Mostardeira/fisiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Mostardeira/citologia , Mostardeira/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA