Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Rapid Commun Mass Spectrom ; 34(9): e8748, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32048367

RESUMO

RATIONALE: Glatiramer acetate (GA) (Copaxone®) is a non-biological complex drug (NBCD) comprising random-sequence polymer chains of four amino acids (MW ~ 5-9 kDa) with unknown structure. The characterization of NBCDs by reversed-phase liquid chromatography/mass spectrometry (RPLC/MS) peptide mapping is often impeded by insufficient separation and/or low sensitivity. To overcome this issue, pre-column derivatization of GA peptide digest was used to improve RPLC/MS detectability and to generate a comprehensive peptide profile. METHODS: Amino groups of peptides generated by trypsin digestion of GA were derivatized using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) reagent. The derivatized mixture of random-sequence peptides was analyzed by liquid chromatography/positive-mode electrospray ionization collision-induced dissociation high-resolution mass spectrometry (RPLC/ESI-CID-HRMS/MS). Data-independent LC/MSE mode was used for data acquisition. RESULTS: The derivatization of the GA peptide mixture increased the detectability of RPLC/ESI-CID-HRMS/MS analysis. The efficacy of the procedure was demonstrated by using selected peptides related to different polymeric chain origins. The resultant peptides were derivatized in a predictable manner giving a minimum of side products. The reproducibility of the developed method was demonstrated by comparing peptide elution profiles derived from six Copaxone® lots. CONCLUSIONS: Application of the AQC pre-column derivatization provides a framework that could be used as an attractive approach for monitoring the quality and characterization of NBCD products in the pharmaceutical industry.


Assuntos
Aminoquinolinas/química , Carbamatos/química , Acetato de Glatiramer/análise , Imunossupressores/análise , Mapeamento de Peptídeos/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Fragmentos de Peptídeos/análise
2.
Biomed Chromatogr ; 34(12): e4948, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32652605

RESUMO

GMDP (glucosoaminyl-muramyl-dipeptide), a synthetic analog of the peptidoglycan fragment of the bacterial cell wall, is an active component of the immunomodulatory drug Licopid. But the pharmacokinetic parameters of GMDP in humans after oral administration have not been investigated yet. The present study aimed at developing and validating a sensitive LC-MS/MS method for the analysis of GMDP in human plasma. The sample was prepared by solid-phase extraction using Strata-X 33 µm polymeric reversed-phase 60 mg/3 mL cartridges Phenomenex (Torrance, CA, USA). The analytes were separated using an Acquity UPLC BEN C18 column, 1.7 µm 2.1 × 50 mm Waters (Milford, USA). GMDP and internal standard growth hormone releasing peptide-2 (pralmorelin) were ionized in positive electrospray ionization mode and detected in multiple reaction monitoring mode. The developed method was validated within a linear range of 50-3000 pg/mL for GMDP. Accuracy for all analytes, given as the deviation between the nominal and measured concentration and assay variability , ranged from 1.61 to 3.02% and from 0.89 to 1.79%, respectively, for both within- and between-run variabilities. The developed and validated HPLC-MS/MS method was successfully used to obtain the plasma pharmacokinetic profiles of GMDP distribution in human plasma.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Acetilmuramil-Alanil-Isoglutamina/administração & dosagem , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/farmacocinética , Administração Oral , Adolescente , Adulto , Humanos , Limite de Detecção , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
3.
J Pharm Biomed Anal ; 236: 115739, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37778200

RESUMO

Pseudomonas aeruginosa (PA) infection is commonly associated with hospital-acquired infections in patients with immune deficiency and/or severe lung diseases. Managing this bacterium is complex due to drug resistance and high adaptability. Fluorothiazinon (FT) is an anti-virulence drug developed to suppress the virulence of bacteria as opposed to bacterial death increasing host's immune response to infection and improving treatment to inhibit drug resistant bacteria. We aimed to evaluate FT pharmacokinetics, quorum sensing signal molecules profiling and tryptophan-related metabolomics in blood, liver, kidneys, and lungs of mice. Study comprised three groups: a group infected with PA that was treated with 400 mg/kg FT ("infected treated group"); a non-infected group, but also treated with the same single drug dose ("non-infected treated group"); and an infected group that received a vehicle ("infected non-treated group"). PA-mediated infection blood pharmacokinetics profiling was indicative of increased drug concentrations as shown by increased Cmax and AUCs. Tissue distribution in liver, kidneys, and lungs, showed that liver presented the most consistently higher concentrations of FT in the infected versus non-infected mice. FT showed that HHQ levels were decreased at 1 h after dosing in lungs while PQS levels were lower across time in lungs of infected treated mice in comparison to infected non-treated mice. Metabolomics profiling performed in lungs and blood of infected treated versus infected non-treated mice revealed drug-associated metabolite alterations, especially in the kynurenic and indole pathways.


Assuntos
Pneumonia , Infecções por Pseudomonas , Humanos , Camundongos , Animais , Virulência , Percepção de Quorum/fisiologia , Triptofano/metabolismo , Pseudomonas aeruginosa/metabolismo , Modelos Animais de Doenças , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Proteínas de Bactérias/metabolismo
4.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358094

RESUMO

The strong psychoactive effects of synthetic cannabinoids raise the need for the deeper studying of their neurometabolic effects. The pharmacokinetic properties of 5F-APINAC and its influence on metabolomics profiles associated with neurotransmission were investigated in rabbit plasma. Twelve rabbits divided into three groups received 1-mL 5F-APINAC at 0.1, 1 and 2 mg/kg. The intervention groups were compared with the controls. Sampling was performed at nine time points (0-24 h). Ultra-high-performance liquid chromatography-tandem mass spectrometry was used. The pharmacokinetics were dose-dependent (higher curve at a higher dose) with a rapid biotransformation, followed by gradual elimination within 24 h. The tryptophan concentrations abruptly decreased (p < 0.05) in all tested groups, returning to the basal levels after 6 h. 5-hydroxylindole acetic acid increased (p < 0.05) in the controls, but this trend was absent in the treated groups. The aspartic acid concentrations were elevated (p < 0.001) in the treated groups. L-kynurenine was elevated (p < 0.01) in the intervention groups receiving 1 mg/kg to 2 mg/kg. Dose-dependent elevations (p < 0.01) were found for kynurenic acid, xanthurenic acid and quinolinic acid (p < 0.01), whereas the anthranilic acid trends were decreased (p < 0.01). The indole-3-propionic acid and indole-3-carboxaldehyde trends were elevated (p < 0.05), whereas the indole-3-lactic acid trajectories were decreased (p < 0.01) in the intervention groups. 5F-APINAC administration had a rapid biotransformation and gradual elimination. The metabolites related to the kynurenine and serotonergic system/serotonin pathways, aspartic acid innervation system and microbial tryptophan catabolism were altered.

5.
Dalton Trans ; (3): 442-7, 2004 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15252552

RESUMO

Novel macroheterocyclic tetraphosphines, namely, 1,1',5,5'-bis(arylene)-bis(1,5-diaza-3,7-diphosphacyclooctanes) 2-6, were obtained without the use of high-dilution techniques or any matrix by the reaction of bis(hydroxymethyl)organylphosphines with primary aromatic diamines containing two p-phenylene fragments linked by various one-atom bridges in a molecular self-assembly process. The structures of 4, 5 and 6 were investigated by X-ray crystal structure analyses. The macrocyclic cavities can be described as a truncated rhombohedral prism with side faces formed by phenylene rings and 1,5-diaza-3,7-diphosphacyclooctanes in the truncated acute angles. In the crystals of these macrocycles, solvating DMF molecules are present, and a methyl group from each of two DMF molecules penetrates the macrocyclic cavities of 4 and 5 from either side, whereas only one disordered molecule of DMF penetrates the cavity of macrocycle 6. Different types of crystal packing are observed for the P-benzyl-substituted compounds 4 and 5 and for the P-mesityl-substituted compound 6: for 4 and 5 the formation of alternating layers containing the macrocycles and the DMF molecules is observed, in which the cavities of the macrocyclic molecules form channels and the DMF molecules are located in the centers of the channels; in the crystal of 6, six molecules are arranged around the 3 axis in the fashion of a six-bladed propeller.


Assuntos
Compostos Macrocíclicos/síntese química , Fosfinas/síntese química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Compostos Macrocíclicos/química , Modelos Moleculares , Estrutura Molecular , Fosfinas/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA