RESUMO
The crystallinity of polyethylene, which significantly affects the properties of the polymer, is quite sensitive to the concentration of its branches. Thus, it is necessary to estimate branch concentration with reasonable accuracy. Currently, (13)C NMR and gel permeation chromatography-Fourier transform infrared spectroscopy are widely-used analysis methods for the analysis of branch concentration. Despite several advantages, these methods sometimes have limitations. For instance, the preparation of samples for (13)C- NMR is tedious because high-concentration samples are required and the time for analysis is greater than 12 h. To more efficiently estimate the branch concentration of polyethylene, we developed a new high-field (1)H NMR method with an improved peak resolution by employing (1) homonuclear decoupling and (2) 2D heteronuclear correlation. The new method was observed to significantly reduce the experimental time to â¼ 30 min; furthermore, sample preparation was relatively simple because the method did not require high-concentration samples.
RESUMO
Purpose To develop an artificial intelligence (AI) model for the diagnosis of breast cancer on digital breast tomosynthesis (DBT) images and to investigate whether it could improve diagnostic accuracy and reduce radiologist reading time. Materials and Methods A deep learning AI algorithm was developed and validated for DBT with retrospectively collected examinations (January 2010 to December 2021) from 14 institutions in the United States and South Korea. A multicenter reader study was performed to compare the performance of 15 radiologists (seven breast specialists, eight general radiologists) in interpreting DBT examinations in 258 women (mean age, 56 years ± 13.41 [SD]), including 65 cancer cases, with and without the use of AI. Area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and reading time were evaluated. Results The AUC for stand-alone AI performance was 0.93 (95% CI: 0.92, 0.94). With AI, radiologists' AUC improved from 0.90 (95% CI: 0.86, 0.93) to 0.92 (95% CI: 0.88, 0.96) (P = .003) in the reader study. AI showed higher specificity (89.64% [95% CI: 85.34%, 93.94%]) than radiologists (77.34% [95% CI: 75.82%, 78.87%]) (P < .001). When reading with AI, radiologists' sensitivity increased from 85.44% (95% CI: 83.22%, 87.65%) to 87.69% (95% CI: 85.63%, 89.75%) (P = .04), with no evidence of a difference in specificity. Reading time decreased from 54.41 seconds (95% CI: 52.56, 56.27) without AI to 48.52 seconds (95% CI: 46.79, 50.25) with AI (P < .001). Interreader agreement measured by Fleiss κ increased from 0.59 to 0.62. Conclusion The AI model showed better diagnostic accuracy than radiologists in breast cancer detection, as well as reduced reading times. The concurrent use of AI in DBT interpretation could improve both accuracy and efficiency. Keywords: Breast, Computer-Aided Diagnosis (CAD), Tomosynthesis, Artificial Intelligence, Digital Breast Tomosynthesis, Breast Cancer, Computer-Aided Detection, Screening Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Bae in this issue.