Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 93(9): 5588-5593, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34138474

RESUMO

Reverse transcription fluorescence resonance energy transfer-polymerase chain reaction (FRET-PCRs) were designed against the two most common mutations in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (A23403G in the spike protein; C14408T in the RNA-dependent RNA polymerase). Based on high-resolution melting curve analysis, the reverse transcription (RT) FRET-PCRs identified the mutations in american type culture collection control viruses, and feline and human clinical samples. All major makes of PCR machines can perform melting curve analysis and thus further specifically designed FRET-PCRs could enable active surveillance for mutations and variants in countries where genome sequencing is not readily available.


Assuntos
Teste Sorológico para COVID-19/métodos , Reação em Cadeia da Polimerase , RNA Polimerase Dependente de RNA , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/diagnóstico , COVID-19/virologia , Gatos , RNA-Polimerase RNA-Dependente de Coronavírus/análise , RNA-Polimerase RNA-Dependente de Coronavírus/imunologia , Humanos , Mutação , RNA Viral/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/imunologia , Temperatura
2.
J Gen Virol ; 97(3): 659-668, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26683768

RESUMO

Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV.


Assuntos
MicroRNAs/imunologia , Poliomielite/imunologia , Poliovirus/fisiologia , Replicação Viral , Regulação Viral da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/imunologia , Interações Hospedeiro-Patógeno , Humanos , MicroRNAs/genética , Poliomielite/genética , Poliomielite/virologia , Poliovirus/genética , RNA Viral/genética , RNA Viral/metabolismo
3.
J Virol ; 88(7): 3802-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429367

RESUMO

UNLABELLED: The 2009 H1N1 lineage represented the first detection of a novel, highly transmissible influenza A virus genotype: six gene segments originated from the North American triple-reassortant swine lineage, and two segments, NA and M, derived from the Eurasian avian-like swine lineage. As neither parental lineage transmits efficiently between humans, the adaptations and mechanisms underlying the pandemic spread of the swine-origin 2009 strain are not clear. To help identify determinants of transmission, we used reverse genetics to introduce gene segments of an early pandemic isolate, A/Netherlands/602/2009 [H1N1] (NL602), into the background of A/Puerto Rico/8/1934 [H1N1] (PR8) and evaluated the resultant viruses in a guinea pig transmission model. Whereas the NL602 virus spread efficiently, the PR8 virus did not transmit. Swapping of the HA, NA, and M segments of NL602 into the PR8 background yielded a virus with indistinguishable contact transmissibility to the wild-type pandemic strain. Consistent with earlier reports, the pandemic M segment alone accounted for much of the improvement in transmission. To aid in understanding how the M segment might affect transmission, we evaluated neuraminidase activity and virion morphology of reassortant viruses. Transmission was found to correlate with higher neuraminidase activity and a more filamentous morphology. Importantly, we found that introduction of the pandemic M segment alone resulted in an increase in the neuraminidase activity of two pairs of otherwise isogenic PR8-based viruses. Thus, our data demonstrate the surprising result that functions encoded by the influenza A virus M segment impact neuraminidase activity and, perhaps through this mechanism, have a potent effect on transmissibility. IMPORTANCE: Our work uncovers a previously unappreciated mechanism through which the influenza A virus M segment can alter the receptor-destroying activity of an influenza virus. Concomitant with changes to neuraminidase activity, the M segment impacts the morphology of the influenza A virion and transmissibility of the virus in the guinea pig model. We suggest that changes in NA activity underlie the ability of the influenza M segment to influence virus transmissibility. Furthermore, we show that coadapted M, NA, and HA segments are required to provide optimal transmissibility to an influenza virus. The M-NA functional interaction we describe appears to underlie the prominent role of the 2009 pandemic M segment in supporting efficient transmission and may be a highly important means by which influenza A viruses restore HA/NA balance following reassortment or transfer to new host environments.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/genética , Vírus Reordenados/fisiologia , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Cobaias , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Países Baixos , Neuraminidase/genética , Infecções por Orthomyxoviridae/virologia , Porto Rico , Genética Reversa , Proteínas da Matriz Viral/genética , Proteínas Virais/genética , Vírion/ultraestrutura
4.
J Virol ; 88(13): 7569-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760887

RESUMO

UNLABELLED: Position 41 of the influenza A virus matrix protein encodes a highly conserved alanine in human and avian lineages. Nonetheless, strains of the Eurasian avian-like swine (Easw) lineage contain a change at this position: position 41 of A/swine/Spain/53207/04 (H1N1) (SPN04) encodes a proline. To assess the impact of this naturally occurring polymorphism on viral fitness, we utilized reverse genetics to produce recombinant viruses encoding wild-type M1 41P (rSPN04-P) and consensus 41A (rSPN04-A) residues. Relative to rSPN04-A, rSPN04-P virus displayed reduced growth in vitro. In the guinea pig model, rSPN04-P was transmitted to fewer contact animals than rSPN04-A and failed to infect guinea pigs that received a low-dose inoculum. Moreover, the P41A change altered virion morphology, reducing the number and length of filamentous virions, as well as reducing the neuraminidase activity of virions. The lab-adapted human isolate, A/PR/8/34 (H1N1) (PR8), is nontransmissible in the guinea pig model, making it a useful background in which to identify certain viral factors that enhance transmissibility. We assessed transmission in the context of single-, double-, and triple-reassortant viruses between PR8 and SPN04; PR8/SPN04 M, PR8/SPN04 M+NA, and PR8/SPN04 M+NA+HA, encoding either matrix 41 A or P, were generated. In each case, the virus possessing 41P transmitted less well than the corresponding 41A-encoding virus. In summary, we have identified a naturally occurring mutation in the influenza A virus matrix protein that impacts transmission efficiency and can alter virion morphology and neuraminidase activity. IMPORTANCE: We have developed a practical model for examining the genetics underlying transmissibility of the Eurasian avian-like swine lineage viruses, which contributed M and NA segments to the 2009 pandemic strain. Here, we use our system to investigate the impact on viral fitness of a naturally occurring polymorphism at matrix (M1) position 41 in an Easw isolate. Position 41 has been implicated previously in adaptation to laboratory substrates and to mice. Here we show that the polymorphism at M1 41 has a limited effect on growth in vitro but changes the morphology of the virus and impacts growth and transmission in the guinea pig model.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/fisiologia , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Vírion/fisiologia , Animais , Células Cultivadas , Feminino , Cobaias , Humanos , Immunoblotting , Camundongos , Mutação/genética , Neuraminidase/genética , Infecções por Orthomyxoviridae/virologia , Suínos , Proteínas da Matriz Viral/genética , Proteínas Virais/genética
5.
J Virol Methods ; 327: 114943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679164

RESUMO

We established primary porcine nasal, tracheal, and bronchial epithelial cells that recapitulate the physical and functional properties of the respiratory tract and have the ability to fully differentiate. Trans-well cultures demonstrated increased transepithelial electrical resistance over time the presence of tight junctions as demonstrated by immunohistochemistry. The nasal, tracheal, and bronchial epithelial cells developed cilia, secreted mucus, and expressed sialic acids on surface glycoproteins, the latter which are required for influenza A virus infection. Swine influenza viruses were shown to replicate efficiently in the primary epithelial cell cultures, supporting the use of these culture models to assess swine influenza and other virus infection. Primary porcine nasal, tracheal, and bronchial epithelial cell culture models enable assessment of emerging and novel influenza viruses for pandemic potential as well as mechanistic studies to understand mechanisms of infection, reassortment, and generation of novel virus. As swine are susceptible to infection with multiple viral and bacterial respiratory pathogens, these primary airway cell models may enable study of the cellular response to infection by pathogens associated with Porcine Respiratory Disease Complex.


Assuntos
Células Epiteliais , Animais , Suínos , Células Epiteliais/virologia , Traqueia/virologia , Traqueia/citologia , Brônquios/virologia , Brônquios/citologia , Células Cultivadas , Técnicas de Cultura de Células/métodos , Vírus da Influenza A/fisiologia , Replicação Viral
6.
Microbiol Spectr ; 12(3): e0338623, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38299860

RESUMO

Since the 1990s, endemic North American swine influenza A viruses (swFLUAVs) contained an internal gene segment constellation, the triple reassortment internal gene (TRIG) cassette. In 2009, the H1N1 pandemic (pdmH1N1) virus spilled back into swine but did not become endemic. However, the pdmH1N1 contributed the matrix gene (pdmM) to the swFLUAVs circulating in the pig population, which replaced the classical swine matrix gene (swM) found in the TRIG cassette, suggesting the pdmM has a fitness benefit. Others have shown that swFLUAVs containing the pdmM have greater transmission efficiency compared to viruses containing the swM gene segment. We hypothesized that the matrix (M) gene could also affect disease and utilized two infection models, resistant BALB/c and susceptible DBA/2 mice, to assess pathogenicity. We infected BALB/c and DBA/2 mice with H1 and H3 swFLUAVs containing the swM or pdmM and measured lung virus titers, morbidity, mortality, and lung histopathology. H1 influenza strains containing the pdmM gene caused greater morbidity and mortality in resistant and susceptible murine strains, while H3 swFLUAVs caused no clinical disease. However, both H1 and H3 swFLUAVs containing the pdmM replicated to higher viral titers in the lungs and pdmM containing H1 viruses induced greater histological changes compared to swM H1 viruses. While the surface glycoproteins and other gene segments may contribute to swFLUAV pathogenicity in mice, these data suggest that the origin of the matrix gene also contributes to pathogenicity of swFLUAV in mice, although we must be cautious in translating these conclusions to their natural host, swine. IMPORTANCE: The 2009 pandemic H1N1 virus rapidly spilled back into North American swine, reassorting with the already genetically diverse swFLUAVs. Notably, the M gene segment quickly replaced the classical M gene segment, suggesting a fitness benefit. Here, using two murine models of infection, we demonstrate that swFLUAV isolates containing the pandemic H1N1 origin M gene caused increased disease compared to isolates containing the classical swine M gene. These results suggest that, in addition to other influenza virus gene segments, the swFLUAV M gene segment contributes to pathogenesis in mammals.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Modelos Animais de Doenças , Camundongos Endogâmicos DBA , Infecções por Orthomyxoviridae/patologia , Mamíferos
7.
J Wildl Dis ; 60(3): 647-659, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38752344

RESUMO

Wild pigs (Sus scrofa) are among the most detrimental invasive species in the USA. They are damaging to crops and agriculture, pose a public health risk as reservoirs of zoonotic pathogens, and may also spread disease to livestock. One pathogen identified in wild pigs is bovine viral diarrhea virus (BVDV), a virus that causes an economically important disease of cattle (Bos taurus and Bos indicus). We sought to determine the BVDV seroprevalence in wild pigs in 17 states across the US and to determine whether age category, sex, or location were associated with a positive antibody titer. Serum samples from 945 wild pigs were collected from 17 US states. Virus neutralization assays were performed to determine antibody titers against BVDV-1b and BVDV-2a. Total BVDV seroprevalence for the study area was 5.8% (95% confidence interval [CI], 4.11-8.89). Seroprevalence across all evaluated states was determined to be 4.4% (95% CI, 2.48-6.82) for BVDV-1b and 3.6% (95% CI, 1.54-5.60) for BVDV-2a. The seroprevalence for individual states varied from 0% to 16.7%. There was no statistical difference in median antibody titer for BVDV-1b or BVDV-2a by sex or age category. State seroprevalences for both BVDV-1b and BVDV-2a were associated with wild pig population estimates for those states.


Assuntos
Vírus da Diarreia Viral Bovina , Infecções por Pestivirus , Sus scrofa , Doenças dos Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Vírus da Diarreia Viral Bovina/fisiologia , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/veterinária , Animais Selvagens/virologia , Estudos Soroepidemiológicos , Densidade Demográfica , Anticorpos Antivirais/sangue , Masculino , Feminino , Animais , Vírus da Diarreia Viral Bovina Tipo 1/fisiologia , Vírus da Diarreia Viral Bovina Tipo 2/fisiologia , Estados Unidos/epidemiologia
8.
Viruses ; 16(4)2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38675891

RESUMO

Swine influenza A viruses pose a public health concern as novel and circulating strains occasionally spill over into human hosts, with the potential to cause disease. Crucial to preempting these events is the use of a threat assessment framework for human populations. However, established guidelines do not specify which animal models or in vitro substrates should be used. We completed an assessment of a contemporary swine influenza isolate, A/swine/GA/A27480/2019 (H1N2), using animal models and human cell substrates. Infection studies in vivo revealed high replicative ability and a pathogenic phenotype in the swine host, with replication corresponding to a complementary study performed in swine primary respiratory epithelial cells. However, replication was limited in human primary cell substrates. This contrasted with our findings in the Calu-3 cell line, which demonstrated a replication profile on par with the 2009 pandemic H1N1 virus. These data suggest that the selection of models is important for meaningful risk assessment.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Suínos , Infecções por Orthomyxoviridae/virologia , Humanos , Medição de Risco , Influenza Humana/virologia , Influenza Humana/epidemiologia , Linhagem Celular , Vírus da Influenza A Subtipo H1N1/fisiologia , Doenças dos Suínos/virologia , Modelos Animais de Doenças , Vírus da Influenza A Subtipo H1N2/genética , Pandemias , Camundongos , Cães , Células Epiteliais/virologia , Feminino
9.
Influenza Other Respir Viruses ; 17(1): e13058, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36285342

RESUMO

BACKGROUND: Pandemic influenza viruses may emerge from animal reservoirs and spread among humans in the absence of cross-reactive antibodies in the human population. Immune response to highly conserved T cell epitopes in vaccines may still reduce morbidity and limit the spread of the new virus even when cross-protective antibody responses are lacking. METHODS: We used an established epitope content prediction and comparison tool, Epitope Content Comparison (EpiCC), to assess the potential for emergent H1N1 G4 swine influenza A virus (G4) to impact swine and human populations. We identified and computed the total cross-conserved T cell epitope content in HA sequences of human seasonal and experimental influenza vaccines, swine influenza vaccines from Europe and the United States (US) against G4. RESULTS: The overall T cell epitope content of US commercial swine vaccines was poorly conserved with G4, with an average T cell epitope coverage of 35.7%. EpiCC scores for the comparison between current human influenza vaccines and circulating human influenza strains were also very low. In contrast, the T cell epitope coverage of a recent European swine influenza vaccine (HL03) was 65.8% against G4. CONCLUSIONS: Poor T cell epitope cross-conservation between emergent G4 and swine and human influenza vaccines in the US may enable G4 to spread in swine and spillover to human populations in the absence of protective antibody response. One European influenza vaccine, HL03, may protect against emergent G4. This study illustrates the use of the EpiCC tool for prospective assessment of existing vaccine strains against emergent viruses in swine and human populations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Suínos , Influenza Humana/prevenção & controle , Epitopos de Linfócito T , Vírus da Influenza A Subtipo H1N1/genética , Estudos Prospectivos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Anticorpos Antivirais
10.
Front Vet Sci ; 10: 1258269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179335

RESUMO

Introduction: Swine serve as an important intermediate host species for generating novel influenza A viruses (IAVs) with pandemic potential because of the host's susceptibility to IAVs of swine, human and avian origin. Primary respiratory cell lines are used in IAV research to model the host's upper respiratory tract in vitro. However, primary cell lines are limited by their passaging capacity and are time-consuming for use in industry and research pipelines. We were interested in developing and characterizing a biologically relevant immortalized swine respiratory cell line that could be used for efficient propagation and characterization of swine IAV isolates. Methods: Lung tissue for the generation of primary swine respiratory cells were isolated from the bronchi of an 8-week-old Yorkshire/Hampshire pig, which were immortalized by transduction of the SV40 T antigen using a lentivirus vector. The transduction of the SV40 T antigen was confirmed by Real Time RT-PCR in cells passaged greater than twenty times. Results: Immortalized swine respiratory cells expressed primarily α2,6 sialic acid receptors and were susceptible to both swine and human IAVs, with swine viruses exhibiting higher replication rates. Notably, infection with a swine H3N2 isolate prompted increased IL-6 and IL-1α protein secretion compared to a seasonal human H3N2 virus. Even after 20 passages, the immortalized cells maintained the primary respiratory cell phenotype and remained permissive to IAV infection without exogenous trypsin. Discussion: In summary, our developed immortalized swine respiratory cell line offers an alternative in vitro substrate for studying IAV replication and transmission dynamics in pigs, overcoming the limitations of primary respiratory cells in terms of low passage survivability and cost.

11.
Poult Sci ; 102(11): 103061, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717478

RESUMO

Salmonella and Campylobacter are common foodborne pathogens in chickens, but their persistence mechanisms within flocks are not fully understood. In this study, 4 groups of SPF Leghorn chickens (n = 50) were orally inoculated with 108Salmonella Enteritidis and 108Campylobacter jejuni, housed in BSL-2 rooms inside containers with autoclaved bedding and beetles (n = 200). Phase I (wk 1-3): the infected chickens remained in the containers and were then euthanized while beetles and litter remained in the container (group A), beetles were removed and litter remained in the container (group B), beetles remained and litter was removed (group C), and beetles and litter were removed (group D). Phase II (wk 5-7): autoclaved bedding was added to containers in groups C and D, and new SPF chickens (n = 50) were introduced and kept. Phase III (wk 8-20): all chickens were euthanized, and the litter and/or beetles remained in the containers for 17 wk. The prevalence of Salmonella Enteritidis and Campylobacter was significantly higher when detected by PCR compared to culture. In phase II, when infected chickens were removed and new chickens were introduced, 1 fecal sample in group B and 3 litter samples in groups B and C were found positive for Salmonella Enteritidis, and Campylobacter was still detected in groups A, B, and C litter samples, but not in beetles. In phase III, when all chickens were removed, Salmonella Enteritidis was identified in beetle samples from group A and the litter samples of all tested groups A, B, and C, and C. jejuni was positive in litter samples from groups A and B but not in the beetle. Sixty-nine days after removing infected chickens, culturable Salmonella was still found in beetles. Salmonella and Campylobacter were detectable in litter up to 127 d after removing infected chickens. This study highlights the transmission of Salmonella and Campylobacter via beetles and litter to new flocks in successive rearing cycles. Intensive control programs should target insect exclusion and implement strict poultry litter management or litter changes between flocks.

12.
Front Immunol ; 14: 1253626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928521

RESUMO

Influenza A viruses (IAVs) pose a significant threat to both human and animal health. Developing IAV vaccine strategies able to elicit broad heterologous protection against antigenically diverse IAV strains is pivotal in effectively controlling the disease. The goal of this study was to examine the immunogenicity and protective efficacy of diverse H1N1 influenza vaccine strategies including monovalent, bivalent, and heterologous prime-boost vaccination regimens, against a mismatched H1N2 swine influenza virus. Five groups were homologous prime-boost vaccinated with either an oil-adjuvanted whole-inactivated virus (WIV) monovalent A/swine/Georgia/27480/2019 (GA19) H1N2 vaccine, a WIV monovalent A/sw/Minnesota/A02636116/2021 (MN21) H1N1 vaccine, a WIV monovalent A/California/07/2009 (CA09) H1N1, a WIV bivalent vaccine composed of CA09 and MN21, or adjuvant only (mock-vaccinated group). A sixth group was prime-vaccinated with CA09 WIV and boosted with MN21 WIV (heterologous prime-boost group). Four weeks post-boost pigs were intranasally and intratracheally challenged with A/swine/Georgia/27480/2019, an H1N2 swine IAV field isolate. Vaccine-induced protection was evaluated based on five critical parameters: (i) hemagglutination inhibiting (HAI) antibody responses, (ii) clinical scores, (iii) virus titers in nasal swabs and respiratory tissue homogenates, (iv) BALf cytology, and (v) pulmonary pathology. While all vaccination regimens induced seroprotective titers against homologous viruses, heterologous prime-boost vaccination failed to enhance HAI responses against the homologous vaccine strains compared to monovalent vaccine regimens and did not expand the scope of cross-reactive antibody responses against antigenically distinct swine and human IAVs. Mismatched vaccination regimens not only failed to confer clinical and virological protection post-challenge but also exacerbated disease and pathology. In particular, heterologous-boosted pigs showed prolonged clinical disease and increased pulmonary pathology compared to mock-vaccinated pigs. Our results demonstrated that H1-specific heterologous prime-boost vaccination, rather than enhancing cross-protection, worsened the clinical outcome and pathology after challenge with the antigenically distant A/swine/Georgia/27480/2019 strain.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Suínos , Vírus da Influenza A Subtipo H1N2 , Anticorpos Antivirais , Vacinação , Adjuvantes Imunológicos
13.
Front Immunol ; 13: 915364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874791

RESUMO

Influenza A viruses (IAVs) pose a global health threat, contributing to hundreds of thousands of deaths and millions of hospitalizations annually. The two major surface glycoproteins of IAVs, hemagglutinin (HA) and neuraminidase (NA), are important antigens in eliciting neutralizing antibodies and protection against disease. However, NA is generally ignored in the formulation and development of influenza vaccines. In this study, we evaluate the immunogenicity and efficacy against challenge of a novel NA virus-like particles (VLPs) vaccine in the porcine model. We developed an NA2 VLP vaccine containing the NA protein from A/Perth/16/2009 (H3N2) and the matrix 1 (M1) protein from A/MI/73/2015, formulated with a water-in-oil-in-water adjuvant. Responses to NA2 VLPs were compared to a commercial adjuvanted quadrivalent whole inactivated virus (QWIV) swine IAV vaccine. Animals were prime boost vaccinated 21 days apart and challenged four weeks later with an H3N2 swine IAV field isolate, A/swine/NC/KH1552516/2016. Pigs vaccinated with the commercial QWIV vaccine demonstrated high hemagglutination inhibition (HAI) titers but very weak anti-NA antibody titers and subsequently undetectable NA inhibition (NAI) titers. Conversely, NA2 VLP vaccinated pigs demonstrated undetectable HAI titers but high anti-NA antibody titers and NAI titers. Post-challenge, NA2 VLPs and the commercial QWIV vaccine showed similar reductions in virus replication, pulmonary neutrophilic infiltration, and lung inflammation compared to unvaccinated controls. These data suggest that anti-NA immunity following NA2 VLP vaccination offers comparable protection to QWIV swine IAV vaccines inducing primarily anti-HA responses.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Humanos , Vírus da Influenza A Subtipo H3N2 , Neuraminidase , Suínos , Água
14.
Virology ; 562: 197-208, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375782

RESUMO

Neuraminidase (NA) is the second most abundant glycoprotein on the surface of influenza A viruses (IAV). Neuraminidase type 1 (NA1) based virus-like particles (VLPs) have previously been shown to protect against challenge with H1N1 and H3N2 IAV. In this study, we produced neuraminidase type 2 (NA2) VLPs derived from the sequence of the seasonal IAV A/Perth/16/2009. Intramuscular vaccination of mice with NA2 VLPs induced high anti-NA serum IgG levels capable of inhibiting NA activity. NA2 VLP vaccination protected against mortality in a lethal A/Hong Kong/1/1968 (H3N2) virus challenge model, but not against lethal challenge with A/California/04/2009 (H1N1) virus. However, bivalent vaccination with NA1 and NA2 VLPs demonstrated no antigenic competition in anti-NA IgG responses and protected against lethal challenge with H1N1 and H3N2 viruses. Here we demonstrate that vaccination with NA VLPs is protective against influenza challenge and supports focusing on anti-NA responses in the development of future vaccination strategies.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Proteínas Virais/imunologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Imunidade Heteróloga , Imunoglobulina G/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Injeções Intramusculares , Camundongos , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
15.
Front Vet Sci ; 8: 654289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937377

RESUMO

The success of inactivated and live-attenuated vaccines has enhanced livestock productivity, promoted food security, and attenuated the morbidity and mortality of several human, animal, and zoonotic diseases. However, these traditional vaccine technologies are not without fault. The efficacy of inactivated vaccines can be suboptimal with particular pathogens and safety concerns arise with live-attenuated vaccines. Additionally, the rate of emerging infectious diseases continues to increase and with that the need to quickly deploy new vaccines. Unfortunately, first generation vaccines are not conducive to such urgencies. Within the last three decades, veterinary medicine has spearheaded the advancement in novel vaccine development to circumvent several of the flaws associated with classical vaccines. These third generation vaccines, including DNA, RNA and recombinant viral-vector vaccines, induce both humoral and cellular immune response, are economically manufactured, safe to use, and can be utilized to differentiate infected from vaccinated animals. The present article offers a review of commercially available novel vaccine technologies currently utilized in companion animal, food animal, and wildlife disease control.

16.
Emerg Infect Dis ; 16(1): 96-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20031049

RESUMO

We tested serum samples from pigs infected or vaccinated with European swine influenza viruses (SIVs) in hemagglutination-inhibition assays against pandemic (H1N1) 2009 virus and related North American SIVs. We found more serologic cross-reaction than expected. Data suggest pigs in Europe may have partial immunity to pandemic (H1N1) 2009 virus.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Animais , Reações Cruzadas , Surtos de Doenças , Europa (Continente)/epidemiologia , Testes de Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H1N2/imunologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia
17.
Pathogens ; 10(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375583

RESUMO

Chlamydia suis is an important, highly prevalent, and diverse obligate intracellular pathogen infecting pigs. In order to investigate the prevalence and diversity of C. suis in the U.S., 276 whole blood samples from feral swine were collected as well as 109 fecal swabs and 60 whole blood samples from domestic pigs. C. suis-specific peptide ELISA identified anti-C. suis antibodies in 13.0% of the blood of feral swine (26/276) and 80.0% of the domestic pigs (48/60). FRET-qPCR and DNA sequencing found C. suis DNA in 99.1% of the fecal swabs (108/109) and 21.7% of the whole blood (13/60) of the domestic pigs, but not in any of the assayed blood samples (0/267) in feral swine. Phylogenetic comparison of partial C. suis ompA gene sequences and C. suis-specific multilocus sequencing typing (MLST) revealed significant genetic diversity of the C. suis identified in this study. Highly genetically diverse C. suis strains are prevalent in domestic pigs in the USA. As crowding strongly enhances the frequency and intensity of highly prevalent Chlamydia infections in animals, less population density in feral swine than in domestic pigs may explain the significantly lower C. suis prevalence in feral swine. A future study is warranted to obtain C. suis DNA from feral swine to perform genetic diversity of C. suis between commercial and feral pigs.

18.
Vet Microbiol ; 251: 108914, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33181438

RESUMO

Tracking the genetic diversity and spread of swine influenza viruses (SIVs) in commercial swine farms is central for control and to reduce the potential emergence of SIV reassortants. We analyzed the diversity of SIVs in nasal washes or oral fluids from commercial swine farms in North Carolina using influenza M qRT-PCR and hemagglutinin (HA) and neuraminidase (NA) subtyping. We found a predominance of H1 HAs and N2 NAs in the samples examined. The majority of the H1 HAs could be further classified into gamma and delta subclusters. We also identified HAs of the H1 alpha cluster, and those of human novel pandemic origin. Glycan binding profiles from a representative subset of these viruses revealed broad α2,6 sialylated glycan recognition, though some strains exhibited the ability to bind to α2,3 sialic acid. These data show that SIV surveillance can aid our understanding of viral transmission dynamics and help uncover the diversity at the human-swine interface.


Assuntos
Fazendas/estatística & dados numéricos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/genética , Doenças dos Suínos/epidemiologia , Animais , Variação Genética , Hemaglutininas Virais/genética , Humanos , Meio-Oeste dos Estados Unidos/epidemiologia , Neuraminidase/genética , Orthomyxoviridae/classificação , Infecções por Orthomyxoviridae/transmissão , Filogenia , RNA Viral/genética , Vírus Reordenados/genética , Sudeste dos Estados Unidos/epidemiologia , Suínos , Doenças dos Suínos/virologia , Proteínas Virais/genética
19.
Viral Immunol ; 31(3): 272-275, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29185877

RESUMO

Canine distemper is a common and potentially lethal multisystemic disease caused by the Canine distemper virus (CDV). We evaluated the diagnostic performance of direct immunofluorescent assay (FA) and cytology to detect CDV antigen in conjunctival cells compared with an established polymerase chain reaction (PCR) detection assay used as a gold standard for CDV diagnosis. Samples were collected from 57 young dogs presenting with central nervous system signs compatible with distemper disease. Exfoliative epithelial cells were collected from the right and left conjunctiva of each animal using nylon-bristled cytobrushes for cytology and cotton swabs for FA and PCR. For the direct FA, samples were stained with anti-CDV polyclonal antiserum conjugated to fluorescein isothiocyanate and imaged using a fluorescent microscope. Out of 57 dogs tested, 19 were PCR positive (15 positive in direct FA and 4 positive in cytology, including one that was negative by PCR), whereas 37 dogs were negative in all methods. A good agreement was observed between the FA and PCR, with a κ-value of 0.833 (95% CI: 0.678-0.989). Meanwhile, there was poor agreement between cytology and PCR (κ-value of 0.164; 95% CI: -0.045 to 0.373) and a fair agreement between FA and cytology (κ-value of 0.231; 95% CI: -0.026 to 0.487). Our results indicated a poor performance of cytology for the detection of CDV antigen. In contrast, FA is a 100% specific and an adequately sensitive assay (sensitivity: 78.95%, negative likelihood ratio: 0.21, 95% CI: 0.09-0.50) for antemortem diagnosis of canine distemper.


Assuntos
Antígenos Virais/análise , Túnica Conjuntiva/virologia , Técnicas Citológicas/métodos , Vírus da Cinomose Canina/imunologia , Cinomose/diagnóstico , Técnica Direta de Fluorescência para Anticorpo/métodos , Animais , Anticorpos Antivirais/imunologia , Cães , Corantes Fluorescentes , Microscopia de Fluorescência , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA