Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 1): 103-110, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985427

RESUMO

The latest Complementary Metal Oxide Semiconductor (CMOS) 2D sensors now rival the performance of state-of-the-art photon detectors for optical application, combining a high-frame-rate speed with a wide dynamic range. While the advent of high-repetition-rate hard X-ray free-electron lasers (FELs) has boosted the development of complex large-area fast CCD detectors in the extreme ultraviolet (EUV) and soft X-ray domains, scientists lacked such high-performance 2D detectors, principally due to the very poor efficiency limited by the sensor processing. Recently, a new generation of large back-side-illuminated scientific CMOS sensors (CMOS-BSI) has been developed and commercialized. One of these cost-efficient and competitive sensors, the GSENSE400BSI, has been implemented and characterized, and the proof of concept has been carried out at a synchrotron or laser-based X-ray source. In this article, we explore the feasibility of single-shot ultra-fast experiments at FEL sources operating in the EUV/soft X-ray regime with an AXIS-SXR camera equipped with the GSENSE400BSI-TVISB sensor. We illustrate the detector capabilities by performing a soft X-ray magnetic scattering experiment at the DiProi end-station of the FERMI FEL. These measurements show the possibility of integrating this camera for collecting single-shot images at the 50 Hz operation mode of FERMI with a cropped image size of 700 × 700 pixels. The efficiency of the sensor at a working photon energy of 58 eV and the linearity over the large FEL intensity have been verified. Moreover, on-the-fly time-resolved single-shot X-ray resonant magnetic scattering imaging from prototype Co/Pt multilayer films has been carried out with a time collection gain of 30 compared to the classical start-and-stop acquisition method performed with the conventional CCD-BSI detector available at the end-station.

2.
J Synchrotron Radiat ; 29(Pt 2): 594, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254326

RESUMO

The name of one of the authors in the article by Léveillé et al. [(2022), J. Synchrotron Rad. 29, 103-110] is corrected.

3.
Sci Rep ; 13(1): 11711, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474533

RESUMO

In multilayers of magnetic thin films with perpendicular anisotropy, domain walls can take on hybrid configurations in the vertical direction which minimize the domain wall energy, with Néel walls in the top or bottom layers and Bloch walls in some central layers. These types of textures are theoretically predicted, but their observation has remained challenging until recently, with only a few techniques capable of realizing a three dimensional characterization of their magnetization distribution. Here we perform a field dependent X-ray resonant magnetic scattering measurements on magnetic multilayers exploiting circular dichroism contrast to investigate such structures. Using a combination of micromagnetic and X-ray resonant magnetic scattering simulations along with our experimental results, we characterize the three-dimensional magnetic texture of domain walls, notably the thickness resolved characterization of the size and position of the Bloch part in hybrid walls. We also take a step in advancing the resonant scattering methodology by using measurements performed off the multilayer Bragg angle in order to calibrate the effective absorption of the X-rays, and permitting a quantitative evaluation of the out of plane (z) structure of our samples. Beyond hybrid domain walls, this approach can be used to characterize other periodic chiral structures such as skyrmions, antiskyrmions or even magnetic bobbers or hopfions, in both static and dynamic experiments.

4.
Nat Commun ; 13(1): 1412, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301298

RESUMO

Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows for the stabilization of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions among others. We report here on the behavior of chiral DWs at ultrashort timescale after optical pumping in perpendicularly magnetized asymmetric multilayers. The magnetization dynamics is probed using time-resolved circular dichroism in x-ray resonant magnetic scattering (CD-XRMS). We observe a picosecond transient reduction of the CD-XRMS, which is attributed to the spin current-induced coherent and incoherent torques within the continuously varying spin texture of the DWs. We argue that a specific demagnetization of the inner structure of the DW induces a flow of spins from the interior of the neighboring magnetic domains. We identify this time-varying change of the DW texture shortly after the laser pulse as a distortion of the homochiral Néel shape toward a transient mixed Bloch-Néel-Bloch texture along a direction transverse to the DW.

5.
Struct Dyn ; 8(3): 034305, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34235231

RESUMO

During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump-probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm ( ≃ 310 eV ), we were able to probe close to the Fe L 3 edge ( 706.8 eV ) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA