Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839032

RESUMO

Hydrogen production is mainly based on the use of fossil fuels, but currently, many alternative routes are being developed, among which the photo-reforming of oxygenated organic compounds stands out. Recently, several studies have been carried out in order to develop new techniques to create bio-inspired TiO2 structures. One of these is 'biotemplating', a process that replicates a biological system in an inorganic TiO2-based structure. In this study, olive by-products-olive leaves-are valorized as a biotemplate for the synthesis of new Fe-TiO2- and Cu-TiO2-based photocatalysts with the aim of improving the replication of the leaf structure and enhancing hydrogen photoproduction. In conclusion, the incorporation of iron and copper decreases the band gap and increases the energetic disorder at the band edges. Moreover, it is verified by SEM and TEM that the metals are not found forming particles but are introduced into the formed TiO2 structure. The accuracy of the internal and external structure replication is improved with the incorporation of Fe in the synthesis, while the incorporation of Cu substantially improves the production of hydrogen, which is multiplied 14 times under UV light and 6 times under sunlight, as compared to a pure TiO2 structure.

2.
Nanomaterials (Basel) ; 13(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177056

RESUMO

Several biochars were synthesized from olive stones and used as supports for TiO2, as an active semiconductor, and Pt as a co-catalyst (Pt/TiO2-PyCF and Pt/TiO2-AC). A third carbon-supported photocatalyst was prepared from commercial mesoporous carbon (Pt/TiO2-MCF). Moreover, a Pt/TiO2 solid based on Evonik P25 was used as a reference. The biochars used as supports transferred, to a large extent, their physical and chemical properties to the final photocatalysts. The synthesized catalysts were tested for hydrogen production from aqueous glycerol photoreforming. The results indicated that a mesoporous nature and small particle size of the photocatalyst lead to better H2 production. The analysis of the operational reaction conditions revealed that the H2 evolution rate was not proportional to the mass of the photocatalyst used, since, at high photocatalyst loading, the hydrogen production decreased because of the light scattering and reflection phenomena that caused a reduction in the light penetration depth. When expressed per gram of TiO2, the activity of Pt/TiO2-PyCF is almost 4-times higher than that of Pt/TiO2 (1079 and 273 mmol H2/gTiO2, respectively), which points to the positive effect of an adequate dispersion of a TiO2 phase on a carbonaceous support, forming a highly dispersed and homogeneously distributed titanium dioxide phase. Throughout a 12 h reaction period, the H2 production rate progressively decreases, while the CO2 production rate increases continuously. This behavior is compatible with an initial period when glycerol dehydrogenation to glyceraldehyde and/or dihydroxyacetone and hydrogen predominates, followed by a period in which comparatively slower C-C cleavage reactions begin to occur, thus generating both H2 and CO2.

3.
Front Microbiol ; 14: 1129721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846808

RESUMO

Nitrogen (N) and phosphorus (P) deficiencies are two of the most agronomic problems that cause significant decrease in crop yield and quality. N and P chemical fertilizers are widely used in current agriculture, causing environmental problems and increasing production costs. Therefore, the development of alternative strategies to reduce the use of chemical fertilizers while maintaining N and P inputs are being investigated. Although dinitrogen is an abundant gas in the atmosphere, it requires biological nitrogen fixation (BNF) to be transformed into ammonium, a nitrogen source assimilable by living organisms. This process is bioenergetically expensive and, therefore, highly regulated. Factors like availability of other essential elements, as phosphorus, strongly influence BNF. However, the molecular mechanisms of these interactions are unclear. In this work, a physiological characterization of BNF and phosphorus mobilization (PM) from an insoluble form (Ca3(PO4)2) in Azotobacter chroococcum NCIMB 8003 was carried out. These processes were analyzed by quantitative proteomics in order to detect their molecular requirements and interactions. BNF led to a metabolic change beyond the proteins strictly necessary to carry out the process, including the metabolism related to other elements, like phosphorus. Also, changes in cell mobility, heme group synthesis and oxidative stress responses were observed. This study also revealed two phosphatases that seem to have the main role in PM, an exopolyphosphatase and a non-specific alkaline phosphatase PhoX. When both BNF and PM processes take place simultaneously, the synthesis of nitrogenous bases and L-methionine were also affected. Thus, although the interdependence is still unknown, possible biotechnological applications of these processes should take into account the indicated factors.

4.
Materials (Basel) ; 15(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36143804

RESUMO

From a technical and economic point of view, our aim is to provide viable solutions for the replacement of fossil fuels which are currently used in internal combustion diesel engines. In this research, two new biofuels composed of second-generation vegetable oils (SVO),used oil sunflower (SO) or castor oil (CO), and the ABE blend (acetone/butanol/ethanol) were evaluated. ABE is an intermediate product from the fermentation of carbohydrates to obtain bio-butanol. Besides, the ABE blend exhibits suitable properties as biofuel, such asvery low kinematic viscosity, reasonable energy density, low autoignition temperature, and broad flammability limits. Diesel/ABE/SVO triple blends were prepared, characterized and then, tested on a diesel engine, evaluating power output, consumption, and exhaust emissions. The power output was slightly reduced due to the low heating values of ABE blend. Also, engine consumed more fuel with the triple blends than with diesel under low engine loads whereas, at medium and high loads, the fuel consumption was very similar to that of diesel. Regarding exhaust gas emissions, soot wasnotably reduced, and nitrogen oxides (NOx) and carbon monoxide (CO2) emissions were lower or comparable to that of diesel, while the CO emissions increased. The use of these biofuels allows the replacement of high percentagesof diesel without compromising engine power and achievinga significant reduction in pollution emissions. Furthermore, a notable improvement in cold flow properties of the fuel blends is obtained, in comparison with diesel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA