Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(3): 59, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749362

RESUMO

BACKGROUND AND AIMS: Apolipoprotein E (APOE) is known for its role in lipid metabolism and its association with age-related disease pathology. The aim of the present work was to identify previously unknown functions of APOE based on the detection of novel APOE protein-protein interaction candidates. APPROACH AND RESULTS: APOE targeted replacement mice and transfected cultured hepatocytes expressing the human isoforms APOE3 and APOE4 were used. For 7 months, APOE3 and APOE4 mice were fed a high-fat and high-sugar diet to induce obesity, while a subgroup was subjected to 30% dietary restriction. Proteomic analysis of coimmunoprecipitation products from APOE mouse liver extracts revealed 28 APOE-interacting candidate proteins, including branched-chain alpha-keto acid dehydrogenase (BCKD) complex subunit alpha (BCKDHA) and voltage-dependent anion-selective channel 1 (VDAC1). The binding of APOE and BCKDHA was verified in situ by proximity ligation assay in cultured cells. The activity of the BCKD enzyme complex was significantly higher in obese APOE4 mice than in APOE3 mice, while the plasma levels of branched-chain amino acids and mTOR signalling proteins were not different. However, the protein-protein interaction with VDAC1 was strongly induced in APOE3 and APOE4 mice upon dietary restriction, suggesting a prominent role of APOE in mitochondrial function. CONCLUSIONS: The protein-protein interactions of APOE with BCKDHA and VDAC1 appear to be of physiological relevance and are modulated upon dietary restriction. Because these are mitochondrial proteins, it may be suggested that APOE is involved in mitochondria-related processes and adaptation to hepatic energy demands.


Assuntos
Apolipoproteína E4 , Proteômica , Camundongos , Humanos , Animais , Apolipoproteína E4/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteínas E/metabolismo , Fígado/metabolismo , Células Cultivadas , Mitocôndrias/metabolismo , Proteínas de Transporte/metabolismo , Camundongos Transgênicos
2.
Am J Nephrol ; 54(9-10): 425-433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231776

RESUMO

INTRODUCTION: In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure. METHODS: This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed. RESULTS: In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3-15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized ß = 0.39, p < 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized ß = 0.29, p < 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32-1.86 per log2, p < 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75-9.19, tertile 3 vs. 1, p < 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p < 0.001). CONCLUSION: In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival.


Assuntos
Transplante de Rim , Masculino , Humanos , Feminino , Transplante de Rim/efeitos adversos , Cobre , Estudos Prospectivos , Rim , Proteinúria/etiologia , Transplantados , Fatores de Risco , Sobrevivência de Enxerto
3.
Nephrol Dial Transplant ; 38(8): 1867-1879, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-36564033

RESUMO

BACKGROUND: Long-term high-dose lithium therapy in bipolar disorder is known to adversely affect kidney function. However, recent animal studies have revealed that low amounts of lithium are beneficial for the kidney when it is damaged by exposure to nephrotoxic compounds, inflammation or oxidative stress. This study aimed to investigate whether urinary lithium excretion, reflecting dietary lithium intake, is associated with adverse long-term kidney graft outcomes and patient survival. METHODS: Urinary lithium concentration was measured using inductively coupled plasma mass spectrometry in 642 stable kidney transplant recipients (KTRs). Graft failure was defined as the start of dialysis or retransplantation and kidney function decline was defined as a doubling of serum creatinine. RESULTS: The median urinary lithium excretion was 3.03 µmol/24 h [interquartile range (IQR) 2.31-4.01]. Urinary lithium excretion was associated with energy, plant protein and water intake. During a median follow-up of 5.3 years (IQR 4.5-6.0), 79 (12%) KTRs developed graft failure and 127 (20%) KTRs developed kidney function decline. Higher urinary lithium excretion was associated with a lower risk of graft failure {hazard ratio [HR] per doubling 0.54 [95% confidence interval (CI) 0.38-0.79]} and kidney function decline [HR per doubling 0.73 (95% CI 0.54-0.99)]. These associations remained independent of adjustment for potential confounders and in sensitivity analyses. There was a significant effect modification with the use of proliferation inhibitors (P = .05) and baseline estimated glomerular filtration rate (eGFR; P < .001), with higher urinary lithium excretion being more protective in KTRs not using proliferation inhibitors and in KTRs with lower baseline eGFR. Furthermore, higher urinary lithium excretion was associated with a reduced risk of all-cause mortality [HR 0.64 (95% CI 0.49-0.83); P = .001]. CONCLUSION: Dietary lithium intake may be a potentially modifiable, yet rather overlooked, risk factor for adverse long-term kidney graft outcomes and patient survival. TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT02811835.


Assuntos
Transplante de Rim , Transplante de Rim/efeitos adversos , Lítio/uso terapêutico , Diálise Renal , Rim , Fatores de Risco , Transplantados
4.
Nephrol Dial Transplant ; 38(10): 2321-2329, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36893803

RESUMO

BACKGROUND: Deficiency of the essential trace element selenium is common in kidney transplant recipients (KTR), potentially hampering antioxidant and anti-inflammatory defence. Whether this impacts the long-term outcomes of KTR remains unknown. We investigated the association of urinary selenium excretion, a biomarker of selenium intake, with all-cause mortality; and its dietary determinants. METHODS: In this cohort study, outpatient KTR with a functioning graft for longer than 1 year were recruited (2008-11). Baseline 24-h urinary selenium excretion was measured by mass spectrometry. Diet was assessed by a 177-item food frequency questionnaire, and protein intake was calculated by the Maroni equation. Multivariable linear and Cox regression analyses were performed. RESULTS: In 693 KTR (43% men, 52 ± 12 years), baseline urinary selenium excretion was 18.8 (interquartile range 15.1-23.4) µg/24-h. During a median follow-up of 8 years, 229 (33%) KTR died. KTR in the first tertile of urinary selenium excretion, compared with those in the third, had over a 2-fold risk of all-cause mortality [hazard ratio 2.36 (95% confidence interval 1.70-3.28); P < .001], independent of multiple potential confounders including time since transplantation and plasma albumin concentration. The most important dietary determinant of urinary selenium excretion was protein intake (Standardized ß 0.49, P < .001). CONCLUSIONS: Relatively low selenium intake is associated with a higher risk of all-cause mortality in KTR. Dietary protein intake is its most important determinant. Further research is required to evaluate the potential benefit of accounting for selenium intake in the care of KTR, particularly among those with low protein intake.


Assuntos
Transplante de Rim , Selênio , Masculino , Humanos , Feminino , Transplante de Rim/efeitos adversos , Estudos de Coortes , Proteínas Alimentares , Dieta , Transplantados , Fatores de Risco
5.
Eur J Nutr ; 61(2): 973-984, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34677681

RESUMO

PURPOSE: In a search for potentially modifiable factors to improve long-term outcome among kidney transplant recipients (KTR), we hypothesized that boron exposure is associated with improved long-term outcome in KTR. METHODS: We determined 24 h urinary boron excretion using inductively coupled plasma mass spectrometry as a measure of boron exposure in 693 stable KTR (57% male, mean age 53y), enrolled in the TransplantLines Food and Nutrition Biobank and Cohort Study. Dietary intake was assessed using validated food-frequency questionnaires. RESULTS: Linear regression analyses showed that dietary intake of fruit, wine and nuts were key determinants of boron excretion. In addition, boron excretion was negatively correlated with homocysteine and inflammatory parameters. In total, 73 (32%), 47 (20%) and 30 (13%) KTR died among the lowest, middle and highest tertiles of 24 h urinary boron excretion, respectively (Plog-rank < 0.001). Cox regression analyses showed that high boron excretion was strongly associated with lower risk of mortality, independent of age, sex, estimated glomerular filtration rate and history of cardiovascular disease (HR per doubling: 0.51, 95% CI: 0.40 to 0.66, P < 0.001). CONCLUSION: Boron may be an overlooked target to improve long-term survival among KTR and potentially other patients, likely through pathways other than inflammation or the methionine-homocysteine cycle that were previously suggested. Interventional trials are warranted to confirm the potential of dietary boron supplementation in KTR and other patient populations.


Assuntos
Boro , Transplante de Rim , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Transplantados
6.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769143

RESUMO

The fruit fly Drosophila melanogaster has become a valuable model organism in nutritional science, which can be applied to elucidate the physiology and the biological function of nutrients, including trace elements. Importantly, the application of chemically defined diets enables the supply of trace elements for nutritional studies under highly standardized dietary conditions. Thus, the bioavailability and bioactivity of trace elements can be systematically monitored in D. melanogaster. Numerous studies have already revealed that central aspects of trace element homeostasis are evolutionary conserved among the fruit fly and mammalian species. While there is sufficient evidence of vital functions of boron (B) in plants, there is also evidence regarding its bioactivity in animals and humans. Lithium (Li) is well known for its role in the therapy of bipolar disorder. Furthermore, recent findings suggest beneficial effects of Li regarding neuroprotection as well as healthy ageing and longevity in D. melanogaster. However, no specific essential function in the animal kingdom has been found for either of the two elements so far. Here, we summarize the current knowledge of Li and B bioactivity in D. melanogaster in the context of health and disease prevention.


Assuntos
Boro/metabolismo , Drosophila melanogaster , Lítio/metabolismo , Modelos Animais , Oligoelementos/metabolismo , Animais
7.
J Clin Biochem Nutr ; 66(1): 24-35, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32001953

RESUMO

To gain a better understanding of how nitrate may affect carbohydrate and lipid metabolism, female wild-type mice were fed a high-fat, high-fructose diet supplemented with either 0, 400, or 800 mg nitrate/kg diet for 28 days. Additionally, obese female db/db mice were fed a 5% fat diet supplemented with the same levels and source of nitrate. Nitrate decreased the sodium-dependent uptake of glucose by ileal mucosa in wild-type mice. Moreover, nitrate significantly decreased triglyceride content and mRNA expression levels of Pparγ in liver and Glut4 in skeletal muscle. Oral glucose tolerance as well as plasma cholesterol, triglyceride, insulin, leptin, glucose and the activity of ALT did not significantly differ between experimental groups but was higher in db/db mice than in wild-type mice. Nitrate changed liver fatty acid composition and mRNA levels of Fads only slightly. Further hepatic genes encoding proteins involved in lipid and carbohydrate metabolism were not significantly different between the three groups. Biomarkers of inflammation and autophagy in the liver were not affected by the different dietary treatments. Overall, the present data suggest that short-term dietary supplementation with inorganic nitrate has only modest effects on carbohydrate and lipid metabolism in genetic and dietary-induced mouse models of obesity.

8.
J Biol Chem ; 290(29): 18090-18101, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26032421

RESUMO

Degradation of ornithine decarboxylase, the rate-limiting enzyme of polyamine biosynthesis, is promoted by the protein antizyme. Expression of antizyme is positively regulated by rising polyamine concentrations that induce a +1 translational frameshift required for production of the full-length protein. Antizyme itself is negatively regulated by the antizyme inhibitor. In our study, the regulation of Caenorhabditis elegans antizyme was investigated, and the antizyme inhibitor was identified. By applying a novel GFP-based method to monitor antizyme frameshifting in vivo, we show that the induction of translational frameshifting also occurs under stressful conditions. Interestingly, during starvation, the initiation of frameshifting was independent of polyamine concentrations. Because frameshifting was also prevalent in a polyamine auxotroph double mutant, a polyamine-independent regulation of antizyme frameshifting is suggested. Polyamine-independent induction of antizyme expression was found to be negatively regulated by the peptide transporter PEPT-1, as well as the target of rapamycin, but not by the daf-2 insulin signaling pathway. Stress-dependent expression of C. elegans antizyme occurred morely slowly than expression in response to increased polyamine levels, pointing to a more general reaction to unfavorable conditions and a diversion away from proliferation and reproduction toward conservation of energy. Interestingly, antizyme expression was found to drastically increase in aging individuals in a postreproductive manner. Although knockdown of antizyme did not affect the lifespan of C. elegans, knockdown of the antizyme inhibitor led to a significant reduction in lifespan. This is most likely caused by an increase in antizyme-mediated degradation of ornithine decarboxylase-1 and a resulting reduction in cellular polyamine levels.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Mudança da Fase de Leitura do Gene Ribossômico , Poliaminas/metabolismo , Proteínas/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade , Ornitina Descarboxilase/metabolismo , Proteínas/metabolismo , Proteólise , Reprodução , Estresse Fisiológico
9.
J Exp Biol ; 217(Pt 14): 2480-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24803455

RESUMO

Locomotion is crucial for the survival of living organisms, as it allows foraging, flight and mating behaviour. In response to environmental cues, many organisms switch between alternative forms of locomotion, referred to as gaits. The nematode Caenorhabditis elegans exhibits two gaits: swimming in liquids and crawling on dense gels. The kinematics and patterns of muscle activity differ between the two gaits, with swimming being less efficient than crawling. We found that C. elegans when grown on dietary restriction (DR) plates and then tested immediately for swimming activity exhibit an accelerated frequency of body-bending swimming compared with ad libitum-fed worms, resulting in an increased swimming speed. This response is independent of the presence or absence of food bacteria in the assay liquid. In contrast, the crawling speed of DR worms on assay agar plates is decreased and influenced by food availability. Because DR also attenuates the disturbed swimming activity of worms that are deficient in the presynaptic dopamine transporter DAT-1, our data link DR-induced alterations of the swimming gait to synaptic processes. This strongly suggests a biochemical rather than a biomechanical response to DR provoked by changes in the worm's body structure. We conclude that the increase in locomotor activity in response to DR is specific to the swimming gait and might represent a survival strategy, allowing food-deprived nematodes to exit unfavourable environments.


Assuntos
Adaptação Fisiológica , Fenômenos Fisiológicos da Nutrição Animal , Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Marcha/fisiologia , Locomoção/fisiologia , Natação/fisiologia , Animais , Água
10.
Biofactors ; 50(1): 161-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37597249

RESUMO

Recent reports indicated that the phytochemical curcumin possesses iron-chelating activity. Here, by employing the fruit fly Drosophila melanogaster, we conducted feeding studies supplementing curcumin or, as a control, the iron chelator bathophenanthroline (BPA). First, the absorption and further metabolization of dietary curcuminoids were proved by metabolomics analyses. Next, we found that 0.2% dietary curcumin, similar to BPA, lowered the iron but also the cobalt content, and to a lesser extent affected the manganese and zinc status. Supplementation during larval stages was required and sufficient for both compounds to elicit these alterations in adult animals. However, curcumin-induced retarded larval development was not attributable to the changed trace metal status. In addition, a reduction in the iron content of up to 70% by curcumin or BPA supplementation did not reduce heme-dependent catalase activity and tolerance toward H2 O2 in D. melanogaster. Moreover, polyamines were not influenced by curcumin treatment and decreased iron levels. This was confirmed for selected organs from 0.2% curcumin-treated mice, except for the spleen. Here, elevated spermidine level and concomitant upregulation of genes involved in polyamine production were associated with a putatively anemia-derived increased spleen mass. Our data underline that the metal-chelating property of curcumin needs to be considered in feeding studies.


Assuntos
Curcumina , Drosophila melanogaster , Camundongos , Animais , Drosophila melanogaster/genética , Curcumina/farmacologia , Cobalto , Poliaminas , Ferro , Estresse Oxidativo , Quelantes , Antioxidantes , Suplementos Nutricionais
11.
Biofactors ; 50(2): 326-346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37706424

RESUMO

The trace element lithium exerts a versatile bioactivity in humans, to some extend overlapping with in vivo findings in the model organism Drosophila melanogaster. A potentially essential function of lithium in reproduction has been suggested since the 1980s and multiple studies have since been published postulating a regulatory role of lithium in female gametogenesis. However, the impact of lithium on fruit fly egg production has not been at the center of attention to date. In the present study, we report that dietary lithium (0.1-5.0 mM LiCl) substantially improved life time egg production in D. melanogaster w1118 females, with a maximum increase of plus 45% when supplementing 1.0 mM LiCl. This phenomenon was not observed in the insulin receptor mutant InRE19, indicating a potential involvement of insulin-like signaling in the lithium-mediated fecundity boost. Analysis of the whole-body and ovarian transcriptome revealed that dietary lithium affects the mRNA levels of genes encoding proteins related to processes of follicular maturation. To the best of our knowledge, this is the first report on dietary lithium acting as an in vivo fecundity stimulant in D. melanogaster, further supporting the suggested benefit of the trace element in female reproduction.


Assuntos
Drosophila melanogaster , Oligoelementos , Humanos , Animais , Feminino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Lítio/farmacologia , Lítio/metabolismo , Oligoelementos/metabolismo , Reprodução , Fertilidade , Insulina/metabolismo
12.
Aging (Albany NY) ; 16(11): 9309-9333, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38862239

RESUMO

The amount of dietary sugars and the administration of lithium both impact the lifespan of the fruit fly Drosophila melanogaster. It is noteworthy that lithium is attributed with insulin-like activity as it stimulates protein kinase B/Akt and suppresses the activity of glycogen synthase kinase-3 (GSK-3). However, its interaction with dietary sugar has largely remained unexplored. Therefore, we investigated the effects of lithium supplementation on known lithium-sensitive parameters in fruit flies, such as lifespan, body composition, GSK-3 phosphorylation, and the transcriptome, while varying the dietary sugar concentration. For all these parameters, we observed that the efficacy of lithium was significantly influenced by the sucrose content in the diet. Overall, we found that lithium was most effective in enhancing longevity and altering body composition when added to a low-sucrose diet. Whole-body RNA sequencing revealed a remarkably similar transcriptional response when either increasing dietary sucrose from 1% to 10% or adding 1 mM LiCl to a 1% sucrose diet, characterized by a substantial overlap of nearly 500 differentially expressed genes. Hence, dietary sugar supply is suggested as a key factor in understanding lithium bioactivity, which could hold relevance for its therapeutic applications.


Assuntos
Sacarose Alimentar , Drosophila melanogaster , Longevidade , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Longevidade/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Lítio/farmacologia , Cloreto de Lítio/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
13.
J Trace Elem Med Biol ; 86: 127548, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39442469

RESUMO

BACKGROUND: The trace element lithium (Li) is known for its therapeutic mood-stabilizing application in humans, but also for its various bioactivities, which have been uncovered in model organisms. According to the literature, Li may interfere with the homeostasis of other minerals in mammals, namely sodium, calcium and magnesium. In addition, Li was found to influence the composition and diversity of the intestinal microbiota in vertebrates, an observation that may be related to the many bioactivities of Li. METHODS: Based on these previous findings, we employed the model organism Drosophila melanogaster to decipher whether Li exhibits similar bioactivities in invertebrates. First, we examined the influence of increasing dietary Li supply (0 -100 mM LiCl) on the status of Li and ten other minerals via Inductively coupled plasma - mass spectrometry (ICP-MS) in heads and remaining body parts of the three wildtype strains w1118, Oregon-R-C and Canton-S. In addition, we investigated the potential impact of Li feeding (0, 0.1, 1 mM LiCl) on the total bacterial load, α- and ß-diversity via real-time quantitative polymerase chain reaction (RT q-PCR) and 16S rDNA sequencing in the intestines of female w1118. RESULTS: Our observations revealed that Li accumulates linearly in both sexes and all body parts of the three Drosophila strains as the dietary Li supply increases. While the status of most elements remained unchanged, the sodium levels of the fly also correlated positively with the Li content of the diet. The intestinal microbiota, however, remained largely unaffected by Li feeding in terms of both, bacterial load and diversity. CONCLUSION: These findings support the hypothesis that elevating the Li supply affects sodium homeostasis in Drosophila, a finding coherent with observations in mammals. Furthermore, our data opposes a possible involvement of the bacterial intestinal colonization in the bioactivity of Li in Drosophila.

14.
Front Pharmacol ; 15: 1396292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989154

RESUMO

Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.

15.
Front Nutr ; 11: 1359958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974810

RESUMO

Background: Ahiflower oil from the seeds of Buglossoides arvensis is rich in α-linolenic acid (ALA) and stearidonic acid (SDA). ALA and SDA are potential precursor fatty acids for the endogenous synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are n3-long chain polyunsaturated fatty acids (n3-LC-PUFAS), in humans. Since taurine, an amino sulfonic acid, is often associated with tissues rich in n3-LC-PUFAS (e.g., in fatty fish, human retina), taurine may play a role in EPA- and DHA-metabolism. Objective: To examine the capacity of the plant-derived precursor fatty acids (ALA and SDA) and of the potential fatty acid metabolism modulator taurine to increase n3-LC-PUFAS and their respective oxylipins in human plasma and cultivated hepatocytes (HepG2 cells). Methods: In a monocentric, randomized crossover study 29 healthy male volunteers received three sequential interventions, namely ahiflower oil (9 g/day), taurine (1.5 g/day) and ahiflower oil (9 g/day) + taurine (1.5 g/day) for 20 days. In addition, cultivated HepG2 cells were treated with isolated fatty acids ALA, SDA, EPA, DHA as well as taurine alone or together with SDA. Results: Oral ahiflower oil intake significantly improved plasma EPA levels (0.2 vs. 0.6% of total fatty acid methyl esters (FAMES)) in humans, whereas DHA levels were unaffected by treatments. EPA-levels in SDA-treated HepG2 cells were 65% higher (5.1 vs. 3.0% of total FAMES) than those in ALA-treated cells. Taurine did not affect fatty acid profiles in human plasma in vivo or in HepG2 cells in vitro. SDA-rich ahiflower oil and isolated SDA led to an increase in EPA-derived oxylipins in humans and in HepG2 cells, respectively. Conclusion: The consumption of ahiflower oil improves the circulating levels of EPA and EPA-derived oxylipins in humans. In cultivated hepatocytes, EPA and EPA-derived oxylipins are more effectively increased by SDA than ALA.

16.
Front Pharmacol ; 15: 1338333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482058

RESUMO

Diabetes remains an important disease worldwide with about 500 million patients globally. In tropical Africa, Morus mesozygia is traditionally used in the treatment of diabetes. Biological and phytochemical investigation of the root bark extracts of the plant led to the isolation of a new prenylated arylbenzofuran named 7-(3-hydroxy-3-methylbutyl)moracin M (1) and two congeners, moracins P (2) and M (3). When compared to acarbose (IC50 = 486 µM), all the isolated compounds are better inhibitors of α-glucosidase with in vitro IC50 values of 16.9, 16.6, and 40.9 µM, respectively. However, they were not active against α-amylase. The compounds also demonstrated moderate inhibition of dipeptidyl peptidase-4 (DPP4). Based on in silico docking studies, all isolates (1, 2, and 3) exhibit binding affinities of -8.7, -9.5, and -8.5 kcal/mol, respectively against α-glucosidase enzyme (PDB: 3AJ7). They are stabilized within the α-glucosidase active site through hydrogen bonds, pi interactions, and hydrophobic interactions. This study provides scientific support for the traditional use of Morus mesozygia in the treatment of diabetes as well as adding to the repository of α-glucosidase inhibitory agents.

17.
Parasitol Res ; 112(9): 3335-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23820606

RESUMO

The macrophage migration inhibitory factors (MIFs) from the filarial parasite Onchocerca volvulus (OvMIF) were compared to the MIFs from the free-living nematode Caenorhabditis elegans (CeMIF) with respect to molecular, biochemical and immunological properties. Except for CeMIF-4, all other MIFs demonstrated tautomerase activity. Surprisingly, OvMIF-1 displayed oxidoreductase activity. The strongest immunostaining for OvMIF-1 was observed in the outer cellular covering of the adult worm body, the syncytial hypodermis; moderate immunostaining was observed in the uterine wall. The generation of a strong humoral immune response towards OvMIF-1 and reduced reactivity to OvMIF-2 was indicated by high IgG levels in patients infected with O. volvulus and cows infected with the closely related Onchocerca ochengi, both MIFs revealing identical amino acid sequences. Using Litomosoides sigmodontis-infected mice, a laboratory model for filarial infection, MIFs derived from the tissue-dwelling O. volvulus, the rodent gut-dwelling Strongyloides ratti and from free-living C. elegans were recognized, suggesting that L. sigmodontis MIF-specific IgM and IgG1 were produced during L. sigmodontis infection of mice and cross-reacted with all MIF proteins tested. Thus, MIF apparently functions as a target of B cell response during nematode infection, but in the natural Onchocerca-specific human and bovine infection, the induced antibodies can discriminate between MIFs derived from parasitic or free-living nematodes.


Assuntos
Caenorhabditis elegans/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Onchocerca volvulus/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/biossíntese , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Bovinos , Reações Cruzadas , Feminino , Filariose/imunologia , Filariose/parasitologia , Filarioidea/imunologia , Filarioidea/fisiologia , Humanos , Imunidade Humoral , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/imunologia , Fatores Inibidores da Migração de Macrófagos/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Onchocerca volvulus/genética , Onchocerca volvulus/imunologia , Oncocercose/imunologia , Oncocercose/parasitologia , Proteínas Recombinantes , Alinhamento de Sequência , Análise de Sequência de DNA , Sigmodontinae , Especificidade por Substrato
18.
Nutrients ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986122

RESUMO

In the context of the growing prevalence of type 2 diabetes (T2DM), control of postprandial hyperglycemia is crucial for its prevention. Blood glucose levels are determined by various factors including carbohydrate hydrolyzing enzymes, the incretin system and glucose transporters. Furthermore, inflammatory markers are recognized predictors of diabetes outcome. Although there is some evidence that isoflavones may exhibit anti-diabetic properties, little is known about to what extent their corresponding hydroxylated metabolites may affect glucose metabolism. We evaluated the ability of a soy extract before (pre-) and after (post-) fermentation to counteract hyperglycemia in vitro and in Drosophila melanogaster in vivo. Fermentation with Aspergillus sp. JCM22299 led to an enrichment of hydroxy-isoflavones (HI), including 8-hydroxygenistein, 8-hydroxyglycitein and 8-hydroxydaidzein, accompanied by an enhanced free radical scavenging activity. This HI-rich extract demonstrated inhibitory activity towards α-glucosidase and a reduction of dipeptidyl peptidase-4 enzyme activity. Both the pre- and post-fermented extracts significantly inhibited the glucose transport via sodium-dependent glucose transporter 1. Furthermore, the soy extracts reduced c-reactive protein mRNA and secreted protein levels in interleukin-stimulated Hep B3 cells. Finally, supplementation of a high-starch D. melanogaster diet with post-fermented HI-rich extract decreased the triacylglyceride content of female fruit flies, confirming its anti-diabetic properties in an in vivo model.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Isoflavonas , Animais , Feminino , Drosophila melanogaster/metabolismo , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/prevenção & controle , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Extratos Vegetais/farmacologia , Glucose
19.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830012

RESUMO

Kidney transplant recipients (KTR) are at increased risk of cardiovascular mortality. We investigated whether, in KTR, post-transplantation copper status is associated with the risk of cardiovascular mortality and potential effect modification by sex. In this cohort study, plasma copper was measured using mass spectrometry in extensively-phenotyped KTR with a functioning allograft >1-year. Cox regression analyses with the inclusion of multiplicative interaction terms were performed. In 660 KTR (53 ± 13 years old, 56% male), the median baseline plasma copper was 15.42 (IQR 13.53-17.63) µmol/L. During a median follow-up of 5 years, 141 KTR died, 53 (38%) due to cardiovascular causes. Higher plasma copper was associated with an increased risk of cardiovascular mortality in the overall KTR population (HR 1.37; 95% CI, 1.07-1.77 per 1-SD, p = 0.01). Sex was a significant effect modifier of this association (Pinteraction = 0.01). Among male KTR, higher plasma copper concentration was independently associated with a two-fold higher risk of cardiovascular mortality (HR 2.09; 95% CI, 1.42-3.07 per 1-SD, p < 0.001). Among female KTR, this association was absent. This evidence offers a rationale for considering a sex-specific assessment of copper's role in cardiovascular risk evaluation. Further studies are warranted to elucidate whether copper-targeted interventions may decrease cardiovascular mortality in male KTR.

20.
Parasitol Res ; 111(2): 827-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22476602

RESUMO

The aim of the study was to screen 11 selected traditional medicinal plants from West Africa for their in vitro antiplasmodial activity in order to determine the activity of single and of combination of plant extracts and to examine the activity of isolated pure compounds. Ethanolic and aqueous extracts of the 11 selected plants and pure compounds from Phyllanthus muellerianus and Anogeissus leiocarpus were tested in vitro against Plasmodium falciparum 3D7. Proliferation inhibitory effects were monitored after 48 h. Among the plants and pure compounds investigated in this study, geraniin from P. muellerianus, ellagic, gentisic, and gallic acids from A. leiocarpus, and extracts from A. leiocarpus, P. muellerianus and combination of A. leiocarpus with P. muellerianus affected the proliferation of P. falciparum most potently. Significant inhibitory activity was observed in combination of A. leiocarpus with P. muellerianus (IC(50) = 10.8 µg/ml), in combination of A. leiocarpus with Khaya senegalensis (IC(50) = 12.5 µg/ml), ellagic acid (IC(50) = 2.88 µM), and geraniin (IC(50) = 11.74 µM). In general growth inhibition was concentration-dependent revealing IC(50) values ranging between 10.8 and -40.1 µg/ml and 2.88 and 11.74 µM for plant extracts and pure substances respectively. Comparison with literature sources of in vivo and in vitro toxicity data revealed that thresholds are up to two times higher than the determined IC(50) values. Thus, the present study suggests that geraniin from P. muellerianus; ellagic acid, gallic acid, and gentisic acid from A. leiocarpus; and combination of extracts from A. leiocarpus with either P. muellerianus or K. senegalensis could be a potential option for malaria treatment.


Assuntos
Antimaláricos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plasmodium falciparum/efeitos dos fármacos , Polifenóis/farmacologia , África Ocidental , Animais , Antimaláricos/química , Relação Dose-Resposta a Droga , Eritrócitos , Humanos , Estrutura Molecular , Extratos Vegetais/química , Polifenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA