Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 24(54): 14547-14553, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30040164

RESUMO

Photolysis of trimethylsilyl azide at 254 nm in Ar matrix at 15 K generates the triplet ground state trimethylsilylnitrene 2 aT, observed by ESR spectroscopy (|D/hc|=1.540 cm-1 ; |E/hc|=0.0002 cm-1 ). Calculations at the CASPT2(14,13) level reveal the open-shell singlet nitrene 2 aS(1 A") is a discrete intermediate lying ≈38 kcal mol-1 above the triplet. The normally expected rearrangement of the nitrene 2 aS to dimethylsilanimine 3 a has a high calculated barrier (33 kcal mol-1 ), which explains why this product has never been observed. Instead, the singlet nitrene 2 aS inserts into a methyl C-H bond to yield silaziridine 12 via an activation barrier of only 6 kcal mol-1 . Ring opening of 12 generates a 1-silaazomethine ylide 13, in which a facile 1,2-H shift yields N-(dimethylsilyl)methanimine 5, all with barriers well below the energy of the singlet nitrene.

2.
J Org Chem ; 81(11): 4601-8, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27152672

RESUMO

Flash vacuum pyrolysis (FVP) of 1-(5-(13)C-5-tetrazolyl)isoquinoline 18 generates 1-((13)C-diazomethyl)isoquinoline 19 and 1-isoquinolyl-((13)C-carbene) 22, which undergoes carbene-nitrene rearrangement to 2-naphthylnitrene 23. The thermally generated nitrene 23 is observed directly by matrix-isolation ESR spectroscopy, but undergoes ring contraction to a mixture of 3- and 2-cyanoindenes 26 and 27 under the FVP conditions. The (13)C label distribution in the cyanoindenes was determined by (13)C NMR spectroscopy and indicates the occurrence of two parallel paths of ring contraction starting from 1-isoquinolylcarbene; path a via ring expansion to 3-aza-benzo[c]cyclohepta-1,2,4,6-tetraene 32 bifurcating to 2-naphthylnitrene 23 and 2-aza-benzobicyclo[3.2.0]heptatriene 39 (paths a1 and a2); and path b via ring closure of the carbene onto the ring nitrogen, yielding 1-aza-benzo[d]bicyclo[4.1.0]hepta-2,4,6-triene 34 and 3-aza-benzo[d]cyclohepta-2,3,5,7-tetraene 35. Product studies demand that the major path is route a1 via 2-naphthylnitrene 23, which then undergoes direct ring contraction to 1-cyanoindene; but the (13)C label distribution requires that the non-nitrene route b contributes significantly. The two reaction paths are modeled at the B3LYP/6-31G* level. The initially formed carbene 22 is estimated to carry chemical activation of some 40 kcal/mol. This allows both reaction channels to proceed simultaneously under low-pressure FVP conditions. FVP of 3-(5-tetrazolyl)isoquinoline 28 similarly generates 3-diazomethylisoquinoline 29 and 3-isoquinolylcarbene 30, which rearranges to 3- and 2-cyanoindenes 26 and 27.

3.
J Am Chem Soc ; 136(43): 15203-14, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25322946

RESUMO

Flash vacuum thermolysis (FVT) of phenyl azide 29 as well as precursors of 2-pyridylcarbene 34 and 4-pyridylcarbene 25 affords phenylnitrene 30 (labeled or unlabeled), as revealed by matrix isolation electron spin resonance spectroscopy. FVT of 1-(13)C-phenyl azide 29 affords 1-cyanocyclopentadiene (cpCN) 32, which is exclusively labeled on the CN carbon, thus demonstrating direct ring contraction in phenylnitrene 30 without the intervention of cycloperambulation and 1,3-H shifts. However, the cpCN obtained by rearrangement of pyridyl-2-((13)C-carbene) 34 carries (13)C label on all carbon atoms, including the CN carbon. Calculations at the B3LYP/6-31G* level and in part at the CASSCF/6-31G* and CASPT2/cc-pVDZ//CASSCF(8,8)/cc-pVDZ levels support a new mechanism whereby 2-pyridylcarbene rearranges in part via 1-azacyclohepta-1,2,4,6-tetraene 36 to phenylnitrene, which then undergoes direct ring contraction to cpCN. Another portion of 2-pyridylcarbene undergoes ring expansion to 4-azacyclohepta-1,2,4,6-tetraene 42, which then by trans-annular cyclization affords 6-azabicyclo[3.2.0]cyclohepta-1,3,5-triene 43. Further rearrangement of 43 via the spiroazirine 44 and biradical/vinylnitrene 45 affords cpCN with the label on the CN group. An analogous mechanisms accounts for the labeling pattern in fulvenallene 60 formed by ring contraction of 1-(13)C-phenylcarbene 59 in the FVT of 1-(13)C-phenyldiazomethane 58.

4.
J Org Chem ; 74(3): 1171-8, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19072092

RESUMO

Photolysis of tetrazolo[1,5-b]isoquinoline/3-azidoisoquinoline 22T/22A generates 3-isoquinolylnitrene 23, which has been characterized together with a diradical species (25) by Ar matrix ESR spectroscopy. Photolysis at lambda > 300 nm generates azirene 24, characterized by IR spectroscopy, whereas further broad-band UV photolysis destroys the azirene to produce o-cyanophenylketenimine 17. The use of 15N-labeled tetrazole/azide 22T'/22A' demonstrates rapid equilibration of two regioisomeric 15N-labeled azirenes 24' and 24'' prior to formation of 17. Flash vacuum thermolysis (FVT) of 22T/22A affords 1-cyano-2H-isoindole 27 in quantitative yield. FVT of 15N-labeled tetrazole/azide 22T'/22A' causes scrambling of 15N label in the 1-cyano-2H-isoindole product. It is concluded that the interconversion of azirenes 24 takes place via the unobserved diazacycloheptatetraene/diazacycloheptatrienylidene 32/33, and that the rearrangement of azirene to ketenimine 17 and 1-cyanoisoindole 27 takes place via reversion to nitrene 23 followed by ring opening to diradical 25.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA