Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(5): 722-740, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060905

RESUMO

Coronary artery disease (CAD) is a pandemic disease where up to half of the risk is explained by genetic factors. Advanced insights into the genetic basis of CAD require deeper understanding of the contributions of different cell types, molecular pathways, and genes to disease heritability. Here, we investigate the biological diversity of atherosclerosis-associated cell states and interrogate their contribution to the genetic risk of CAD by using single-cell and bulk RNA sequencing (RNA-seq) of mouse and human lesions. We identified 12 disease-associated cell states that we characterized further by gene set functional profiling, ligand-receptor prediction, and transcription factor inference. Importantly, Vcam1+ smooth muscle cell state genes contributed most to SNP-based heritability of CAD. In line with this, genetic variants near smooth muscle cell state genes and regulatory elements explained the largest fraction of CAD-risk variance between individuals. Using this information for variant prioritization, we derived a hybrid polygenic risk score (PRS) that demonstrated improved performance over a classical PRS. Our results provide insights into the biological mechanisms associated with CAD risk, which could make a promising contribution to precision medicine and tailored therapeutic interventions in the future.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Aterosclerose/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Fatores de Risco , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único/genética
2.
Arterioscler Thromb Vasc Biol ; 44(6): 1330-1345, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602103

RESUMO

BACKGROUND: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS: We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS: Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.


Assuntos
Proteína Semelhante a Receptor de Calcitonina , Doença da Artéria Coronariana , Células Endoteliais , Elementos Facilitadores Genéticos , Polimorfismo de Nucleotídeo Único , Estresse Mecânico , Humanos , Células Endoteliais/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Mecanotransdução Celular , Células Cultivadas , Regulação da Expressão Gênica , Ligação Proteica , Predisposição Genética para Doença , Sítios de Ligação
3.
J Surg Res ; 287: 82-89, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870305

RESUMO

INTRODUCTION: Ascending aortic dilatation is a well-known risk factor for aortic rupture. Indications for aortic replacement in its dilatation concomitant to other open-heart surgery exist; however, cut-off values based solely on aortic diameter may fail to identify patients with weakened aortic tissue. We introduce near-infrared spectroscopy (NIRS) as a diagnostic tool to nondestructively evaluate the structural and compositional properties of the human ascending aorta during open-heart surgeries. During open-heart surgery, NIRS could provide information regarding tissue viability in situ and thus contribute to the decision of optimal surgical repair. MATERIALS AND METHODS: Samples were collected from patients with ascending aortic aneurysm (n = 23) undergoing elective aortic reconstruction surgery and from healthy subjects (n = 4). The samples were subjected to spectroscopic measurements, biomechanical testing, and histological analysis. The relationship between the near-infrared spectra and biomechanical and histological properties was investigated by adapting partial least squares regression. RESULTS: Moderate prediction performance was achieved with biomechanical properties (r = 0.681, normalized root-mean-square error of cross-validation = 17.9%) and histological properties (r = 0.602, normalized root-mean-square error of cross-validation = 22.2%). Especially the performance with parameters describing the aorta's ultimate strength, for example, failure strain (r = 0.658), and elasticity (phase difference, r = 0.875) were promising and could, therefore, provide quantitative information on the rupture sensitivity of the aorta. For the estimation of histological properties, the results with α-smooth muscle actin (r = 0.581), elastin density (r = 0.973), mucoid extracellular matrix accumulation(r = 0.708), and media thickness (r = 0.866) were promising. CONCLUSIONS: NIRS could be a potential technique for in situ evaluation of biomechanical and histological properties of human aorta and therefore useful in patient-specific treatment planning.


Assuntos
Aneurisma Aórtico , Doenças da Aorta , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Aorta/fisiologia , Aneurisma Aórtico/cirurgia , Elasticidade , Fenômenos Biomecânicos/fisiologia
4.
Arterioscler Thromb Vasc Biol ; 42(7): 811-818, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35587695

RESUMO

Smooth muscle cells and endothelial cells have a remarkable level of plasticity in vascular pathologies. In thoracic and abdominal aortic aneurysms, smooth muscle cells have been suggested to undergo phenotypic switching and to contribute to degradation of the aortic wall structure in response to, for example, inflammatory mediators, dysregulation of growth factor signaling or oxidative stress. Recently, endothelial-to-mesenchymal transition, and a clonal expansion of degradative smooth muscle cells and immune cells, as well as mesenchymal stem-like cells have been suggested to contribute to the progression of aortic aneurysms. What are the factors driving the aortic cell phenotype changes and how vascular flow, known to affect aortic wall structure and to be altered in aortic aneurysms, could affect aortic cell remodeling? In this review, we summarize the current literature on aortic cell heterogeneity and phenotypic switching in relation to changes in vascular flow and aortic wall structure in aortic aneurysms in clinical samples with special focus on smooth muscle and endothelial cells. The differences between thoracic and abdominal aortic aneurysms are discussed.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma da Aorta Torácica , Aneurisma Aórtico , Aneurisma Aórtico/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Torácica/patologia , Células Endoteliais/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
5.
Nucleic Acids Res ; 49(14): 8078-8096, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34320216

RESUMO

Super-enhancers are clusters of enhancers associated with cell lineage. They can be powerful gene-regulators and may be useful in cell-type specific viral-vector development. Here, we have screened for endothelial super-enhancers and identified an enhancer from within a cluster that conferred 5-70-fold increase in transgene expression. Importantly, CRISPR/Cas9 deletion of enhancers demonstrated regulation of ADAMTS18, corresponding to evidence of chromatin contacts between these genomic regions. Cell division-related pathways were primarily affected by the enhancer deletions, which correlated with significant reduction in cell proliferation. Furthermore, we observed changes in angiogenesis-related genes consistent with the endothelial specificity of this SE. Indeed, deletion of the enhancers affected tube formation, resulting in reduced or shortened sprouts. The super-enhancer angiogenic role is at least partly due to its regulation of ADAMTS18, as siRNA knockdown of ADAMTS18 resulted in significantly shortened endothelial sprouts. Hence, functional characterization of a novel endothelial super-enhancer has revealed substantial downstream effects from single enhancer deletions and led to the discovery of the cis-target gene ADAMTS18 and its role in endothelial function.


Assuntos
Proteínas ADAMTS/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Neovascularização Fisiológica/genética , Sistemas CRISPR-Cas/genética , Divisão Celular/genética , Linhagem da Célula/genética , Células Endoteliais/metabolismo , Humanos , RNA Interferente Pequeno/genética , Transdução de Sinais/genética
7.
Angiogenesis ; 24(1): 129-144, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33021694

RESUMO

The BMP/TGFß-Smad, Notch and VEGF signaling guides formation of endothelial tip and stalk cells. However, the crosstalk of bone morphogenetic proteins (BMPs) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling has remained largely unknown. We demonstrate that BMP family members regulate VEGFR2 and Notch signaling, and act via TAZ-Hippo signaling pathway. BMPs were found to be regulated after VEGF gene transfer in C57/Bl6 mice and in a porcine myocardial ischemia model. BMPs 2/4/6 were identified as endothelium-specific targets of VEGF. BMP2 modulated VEGF-mediated endothelial sprouting via Delta like Canonical Notch Ligand 4 (DLL4). BMP6 modulated VEGF signaling by regulating VEGFR2 expression and acted via Hippo signaling effector TAZ, known to regulate cell survival/proliferation, and to be dysregulated in cancer. In a matrigel plug assay in nude mice BMP6 was further demonstrated to induce angiogenesis. BMP6 is the first member of BMP family found to directly regulate both Hippo signaling and neovessel formation. It may thus serve as a target in pro/anti-angiogenic therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Morfogenética Óssea 6/metabolismo , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Sequência de Bases , Proteína Morfogenética Óssea 2/metabolismo , Hipóxia Celular , Núcleo Celular/metabolismo , Via de Sinalização Hippo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transporte Proteico , Suínos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 40(11): 2665-2677, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938217

RESUMO

OBJECTIVE: Previous studies have demonstrated that the expression of several lysine (K)-specific demethylases (KDMs) is induced by hypoxia. Here, we sought to investigate the exact mechanisms underlying this regulation and its functional implications for endothelial cell function, such as angiogenesis. Approach and Results: We analyzed the expression changes of KDMs under hypoxia and modulation of HIF (hypoxia-inducible factor) expression using GRO-Seq and RNA-Seq in endothelial cells. We provide evidence that the majority of the KDMs are induced at the level of nascent transcription mediated by the action of HIF-1α and HIF-2α. Importantly, we show that transcriptional changes at the level of initiation represent the major mechanism of gene activation. To delineate the epigenetic effects of hypoxia and HIF activation in normoxia, we analyzed the genome-wide changes of H3K27me3 using chromosome immunoprecipitation-Seq. We discovered a redistribution of H3K27me3 at ≈2000 to 3000 transcriptionally active loci nearby genes implicated in angiogenesis. Among these, we demonstrate that vascular endothelial growth factor A (VEGFA) expression is partly induced by KDM4B- and KDM6B-mediated demethylation of nearby regions. Knockdown of KDM4B and KDM6B decreased cell proliferation, tube formation, and endothelial sprouting while affecting hundreds of genes associated with angiogenesis. These findings provide novel insights into the regulation of KDMs by hypoxia and the epigenetic regulation of VEGFA-mediated angiogenesis. CONCLUSIONS: Our study describes an additional level of epigenetic regulation where hypoxia induces redistribution of H3K27me3 around genes implicated in proliferation and angiogenesis. More specifically, we demonstrate that KDM4B and KDM6B play a key role in modulating the expression of the major angiogenic driver VEGFA.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Neovascularização Fisiológica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Células Cultivadas , Desmetilação , Histona Desmetilases/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Acta Neurochir (Wien) ; 163(9): 2503-2514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34185176

RESUMO

BACKGROUND: Brain arteriovenous malformations (bAVM) may rupture causing disability or death. BAVM vessels are characterized by abnormally high flow that in general triggers expansive vessel remodeling mediated by cyclo-oxygenase-2 (COX2), the target of non-steroidal anti-inflammatory drugs. We investigated whether COX2 is expressed in bAVMs and whether it associates with inflammation and haemorrhage in these lesions. METHODS: Tissue was obtained from surgery of 139 bAVMs and 21 normal Circle of Willis samples. The samples were studied with immunohistochemistry and real-time quantitative polymerase chain reaction (RT-PCR). Clinical data was collected from patient records. RESULTS: COX2 expression was found in 78% (109/139) of the bAVMs and localized to the vessels' lumen or medial layer in 70% (95/135) of the bAVMs. Receptors for prostaglandin E2, a COX2-derived mediator of vascular remodeling, were found in the endothelial and smooth muscle cells and perivascular inflammatory cells of bAVMs. COX2 was expressed by infiltrating inflammatory cells and correlated with the extent of inflammation (r = .231, p = .007, Spearman rank correlation). COX2 expression did not associate with haemorrhage. CONCLUSION: COX2 is induced in bAVMs, and possibly participates in the regulation of vessel wall remodelling and ongoing inflammation. Role of COX2 signalling in the pathobiology and clinical course of bAVMs merits further studies.


Assuntos
Encéfalo/metabolismo , Ciclo-Oxigenase 2 , Malformações Arteriovenosas Intracranianas , Remodelação Vascular , Encéfalo/patologia , Ciclo-Oxigenase 2/genética , Humanos , Inflamação , Malformações Arteriovenosas Intracranianas/metabolismo
10.
Angiogenesis ; 20(1): 109-124, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27873103

RESUMO

AIMS: Histamine and vascular endothelial growth factor A (VEGF) are central regulators in vascular pathologies. Their gene regulation leading to vascular remodeling has remained obscure. In this study, EC regulation mechanisms of histamine and VEGF were compared by RNA sequencing of primary endothelial cells (ECs), functional in vitro assays and in vivo permeability mice model. METHODS AND RESULTS: By RNA sequencing, similar transcriptional alterations of genes involved in activation of primary ECs, cell proliferation and adhesion were observed between histamine and VEGF. Seventy-six commonly regulated genes were found, representing ~53% of all VEGF-regulated transcripts and ~26% of all histamine-regulated transcripts. Both factors regulated tight junction formation and expression of pro-angiogenic transcription factors (TFs) affecting EC survival, migration and tube formation. Novel claudin-5 upstream regulatory genes were identified. VEGF was demonstrated to regulate expression of SNAI2, whereas pro-angiogenic TFs NR4A1, MYCN and RCAN1 were regulated by both histamine and VEGF. Claudin-5 was shown to be regulated VEGFR2/PI3K-Akt dependently by VEGF and PI3K-Akt independently by histamine. Interleukin-8 was shown to downregulate claudin-5 by histamine. Additionally, SNAI2, NR4A1 and MYCN were shown to mediate EC survival, migration and tube formation and to regulate expression of claudin-5. Further systemic delivery of VEGF and histamine was shown to induce a fast vascular hyperpermeability response in intact vasculature of C57/Bl6 mice followed by regulation of NR4A1 and MYCN. CONCLUSIONS: Our study identifies novel claudin-5 upstream regulatory genes of histamine and VEGF that induce cellular angiogenic processes. Our results increase knowledge of angiogenic EC phenotype and provide novel treatment targets for vascular pathologies.


Assuntos
Claudina-5/metabolismo , Histamina/farmacologia , Interleucina-8/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Claudina-5/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Fator de Crescimento de Hepatócito/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neovascularização Fisiológica/genética , Especificidade de Órgãos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
J Virol ; 87(20): 11148-59, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926339

RESUMO

Baculoviruses are insect-specific viruses commonly found in nature. They are not able to replicate in mammalian cells but can transduce them when equipped with an appropriate mammalian cell active expression cassette. Although the viruses have been studied in several types of mammalian cells from different origins, the receptor that baculovirus uses to enter or interact with mammalian cells has not yet been identified. Due to the wide tropism of the virus, the receptor has been suggested to be a generally found cell surface molecule. In this article, we investigated the interaction of baculovirus and mammalian cell surface heparan sulfate proteoglycans (HSPG) in more detail. Our data show that baculovirus requires HSPG sulfation, particularly N- and 6-O-sulfation, to bind to and transduce mammalian cells. According to our results, baculovirus binds specifically to syndecan-1 (SDC-1) but does not interact with SDC-2 to SDC-4 or with glypicans. Competition experiments performed with SDC-1 antibody or recombinant SDC-1 protein inhibited baculovirus binding, and SDC-1 overexpression enhanced baculovirus-mediated transduction. In conclusion, we show that SDC-1, a commonly found cell surface HSPG molecule, has a role in the binding and entry of baculovirus in vertebrate cells. The results presented here reveal important aspects of baculovirus entry and can serve as a basis for next-generation baculovirus vector development for gene delivery.


Assuntos
Baculoviridae/fisiologia , Receptores Virais/metabolismo , Sindecana-1/metabolismo , Ligação Viral , Internalização do Vírus , Linhagem Celular , Humanos , Sulfatos/metabolismo , Transdução Genética
12.
J Virol ; 87(17): 9822-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824807

RESUMO

Some cell types are more susceptible to viral gene transfer or virus infection than others, irrespective of the number of viral receptors or virus binding efficacy on their surfaces. In order to characterize the cell-line-specific features contributing to efficient virus entry, we studied two cell lines (Ea.hy926 and MG-63) that are nearly nonpermissive to insect-specific baculovirus (BV) and the human enterovirus echovirus 1 (EV1) and compared their characteristics with those of a highly permissive (HepG2) cell line. All the cell lines contained high levels of viral receptors on their surfaces, and virus binding was shown to be efficient. However, in nonpermissive cells, BV and its receptor, syndecan 1, were unable to internalize in the cells and formed large aggregates near the cell surface. Accordingly, EV1 had a low infection rate in nonpermissive cells but was still able to internalize the cells, suggesting that the postinternalization step of the virus was impaired. The nonpermissive and permissive cell lines showed differential expression of syntenin, filamentous actin, vimentin, and phosphorylated protein kinase C subtype α (pPKCα). The nonpermissive nature of the cells could be modulated by the choice of culture medium. RPMI medium could partially rescue infection/transduction and concomitantly showed lower syntenin expression, a modified vimentin network, and altered activities of PKC subtypes PKCα and PKCε. The observed changes in PKCα and PKCε activation caused alterations in the vimentin organization, leading to efficient BV transduction and EV1 infection. This study identifies PKCα, PKCε, and vimentin as key factors affecting efficient infection and transduction by EV1 and BV, respectively.


Assuntos
Enterovirus Humano B/patogenicidade , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-épsilon/metabolismo , Vimentina/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/patogenicidade , Baculoviridae/fisiologia , Linhagem Celular , Meios de Cultura , Enterovirus Humano B/fisiologia , Células HEK293 , Células Hep G2 , Interações Hospedeiro-Patógeno , Humanos , Integrina alfa2beta1/metabolismo , Camundongos , Modelos Biológicos , Fosforilação , Receptores Virais/metabolismo , Sindecana-1/metabolismo , Transdução Genética , Virulência , Internalização do Vírus
13.
Cardiorenal Med ; 14(1): 129-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342088

RESUMO

BACKGROUND: The vascular endothelium serves as a semi-selective permeable barrier as a conduit for transport of fluid, solutes, and various cell populations between the vessel lumen and tissues. The endothelium thus has a dynamic role in the regulation of coagulation, immune system, lipid and electrolyte transport, as well as neurohumoral influences on vascular tone and end-organ injury to tissues such as the heart and kidney. SUMMARY: Within this framework, pharmacologic strategies for heart and kidney diseases including blood pressure, glycemic control, and lipid reduction provide significant risk reduction, yet certain populations are at risk for substantial residual risk for disease progression and treatment resistance and often have unwanted off-target effects leaving the need for adjunct, alternative targeted therapies. Recent advances in techniques in sequencing and spatial transcriptomics have paved the way for the development of new therapies for targeting heart and kidney disease that include various gene, cell, and nano-based therapies. Cell-specific endothelium-specific targeting of viral vectors will enable their use for the treatment of heart and kidney diseases with gene therapy that can avoid unwanted off-target effects, improve treatment resistance, and reduce residual risk for disease progression. KEY MESSAGES: The vascular endothelium is an important therapeutic target for chronic kidney and cardiovascular diseases. Developing endothelial-specific gene therapies can benefit patients who develop resistance to current treatments.


Assuntos
Síndrome Cardiorrenal , Endotélio Vascular , Humanos , Síndrome Cardiorrenal/fisiopatologia , Síndrome Cardiorrenal/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Terapia Genética/métodos , Animais
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167139, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537685

RESUMO

BACKGROUND: Cerebral cavernous malformation (CCM) is a disease associated with an elevated risk of focal neurological deficits, seizures, and hemorrhagic stroke. The disease has an inflammatory profile and improved knowledge of CCM pathology mechanisms and exploration of candidate biomarkers will enable new non-invasive treatments. METHODS: We analyzed protein signatures in human CCM tissue samples by using a highly specific and sensitive multiplexing technique, proximity extension assay. FINDINGS: Data analysis revealed CCM specific proteins involved in endothelial dysfunction/inflammation/activation, leukocyte infiltration/chemotaxis, hemostasis, extracellular matrix dysfunction, astrocyte and microglial cell activation. Biomarker expression profiles matched bleeding status, especially with higher levels of inflammatory markers and activated astrocytes in ruptured than non-ruptured samples, some of these biomarkers are secreted into blood or urine. Furthermore, analysis was also done in a spatially resolving manner by separating the lesion area from the surrounding brain tissue. Our spatial studies revealed that although appearing histologically normal, the CCM border areas were pathological when compared to control brain tissues. Moreover, the functional relevance of CD93, ICAM-1 and MMP9, markers related to endothelial cell activation and extracellular matrix was validated by a murine pre-clinical CCM model. INTERPRETATION: Here we present a novel strategy for proteomics analysis on human CCMs, offering a possibility for high-throughput protein screening acquiring data on the local environment in the brain. Our data presented here describe CCM relevant brain proteins and specifically those which are secreted can serve the need of circulating CCM biomarkers to predict cavernoma's risk of bleeding.


Assuntos
Biomarcadores , Hemangioma Cavernoso do Sistema Nervoso Central , Molécula 1 de Adesão Intercelular , Proteômica , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Proteômica/métodos , Biomarcadores/metabolismo , Biomarcadores/análise , Animais , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Membrana , Proteínas Proto-Oncogênicas , Proteínas Reguladoras de Apoptose
15.
Cardiovasc Res ; 120(8): 869-882, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38289873

RESUMO

AIMS: Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply translating ribosome affinity purification sequencing to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS: To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing enhanced green fluorescent protein (EGFP)-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, which are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, inter-alpha-trypsin inhibitor-4 (Itih4), Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease through the colocalization of genome-wide association studies, splice quantitative trait loci (QTL), and protein QTL signals. CONCLUSION: We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.


Assuntos
Doenças da Aorta , Aterosclerose , Modelos Animais de Doenças , Músculo Liso Vascular , Miócitos de Músculo Liso , Placa Aterosclerótica , Proteínas Ribossômicas , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Regulação da Expressão Gênica , Perfilação da Expressão Gênica , Fenótipo , Transcriptoma , Receptores de LDL/genética , Receptores de LDL/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Camundongos Knockout , Humanos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Aorta/metabolismo , Aorta/patologia , Feminino
16.
Cells ; 12(16)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37626870

RESUMO

This study aimed to show the significance of capillary function in post-ischemic recovery from the perspective of physiological parameters, such as blood flow, hemoglobin oxygenation and tissue regeneration. Muscle-level microvascular alterations of blood flow and hemoglobin oxygenation, and post-ischemic myofiber and capillary responses were analyzed in aged, healthy C57Bl/6J mice (n = 48) and aged, hyperlipidemic LDLR-/-ApoB100/100 mice (n = 69) after the induction of acute hindlimb ischemia using contrast ultrasound, photoacoustic imaging and histological analyses, respectively. The capillary responses that led to successful post-ischemic muscle repair in C57Bl/6J mice included an early capillary dilation phase, preceding the return of arterial driving pressure, followed by an increase in capillary density that further supported satellite cell-induced muscle regeneration. Initial capillary enlargement was absent in the LDLR-/-ApoB100/100 mice with lifelong moderate hypercholesterolemia and led to an inability to recover arterial driving pressure, with a resulting increase in distal necrosis, chronic tissue damage and a delay in the overall recovery after ischemia. To conclude, this manuscript highlights, beyond arterial collateralization, the importance of the proper function of the capillary endothelium in post-ischemic recovery and displays how post-ischemic capillary dynamics associate beyond tissue blood flow to both hemoglobin oxygenation and tissue regeneration.


Assuntos
Artérias , Isquemia , Animais , Camundongos , Endotélio Vascular , Camundongos Endogâmicos C57BL , Músculos , Membro Posterior
17.
Elife ; 122023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199488

RESUMO

Background: Sporadic venous malformation (VM) and angiomatosis of soft tissue (AST) are benign, congenital vascular anomalies affecting venous vasculature. Depending on the size and location of the lesion, symptoms vary from motility disturbances to pain and disfigurement. Due to the high recurrence of the lesions, more effective therapies are needed. Methods: As targeting stromal cells has been an emerging concept in anti-angiogenic therapies, here, by using VM/AST patient samples, RNA-sequencing, cell culture techniques, and a xenograft mouse model, we investigated the crosstalk of endothelial cells (EC) and fibroblasts and its effect on vascular lesion growth. Results: We report, for the first time, the expression and secretion of transforming growth factor A (TGFA) in ECs or intervascular stromal cells in AST and VM lesions. TGFA induced secretion of vascular endothelial growth factor (VEGF-A) in paracrine fashion, and regulated EC proliferation. Oncogenic PIK3CA variant in p.H1047R, a common somatic mutation found in these lesions, increased TGFA expression, enrichment of hallmark hypoxia, and in a mouse xenograft model, lesion size, and vascularization. Treatment with afatinib, a pan-ErbB tyrosine-kinase inhibitor, decreased vascularization and lesion size in a mouse xenograft model with ECs expressing oncogenic PIK3CA p.H1047R variant and fibroblasts. Conclusions: Based on the data, we suggest that targeting of both intervascular stromal cells and ECs is a potential treatment strategy for vascular lesions having a fibrous component. Funding: Academy of Finland, Ella and Georg Ehnrooth foundation, the ERC grants, Sigrid Jusélius Foundation, Finnish Foundation for Cardiovascular Research, Jane and Aatos Erkko Foundation, GeneCellNano Flagship program, and Department of Musculoskeletal and Plastic Surgery, Helsinki University Hospital.


Assuntos
Células Endoteliais , Malformações Vasculares , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Malformações Vasculares/tratamento farmacológico , Malformações Vasculares/genética , Malformações Vasculares/patologia
18.
J Virol ; 85(13): 6714-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525342

RESUMO

Virus-induced alterations in cell morphology play important roles in the viral life cycle. To examine the intracellular events of coxsackievirus B3 (CVB3) infection, green monkey kidney (GMK) cells were either inoculated with the virus or transfected with the viral RNA. Various microscopic and flow cytometric approaches demonstrated the emergence of CVB3 capsid proteins at 8 h posttransfection, followed by morphological transformation of the cells. The morphological changes included formation of membranous protrusions containing viral capsids, together with microtubules and actin. Translocation of viral capsids into these protrusions was sensitive to cytochalasin D, suggesting the importance of actin in the process. Three-dimensional (3D) live-cell imaging demonstrated frequent contacts between cellular protrusions and adjacent cells. Markedly, in spite of an increase in the cellular viral protein content starting 8 h postinfection, no significant decrease in cell viability or increase in the amount of early apoptotic markers was observed by flow cytometry by 28 h postinfection. Comicroinjection of viral RNA and fluorescent dextran in the presence of neutralizing virus antibody suggested that these protrusions mediated the spread of infection from one cell to another prior to virus-induced cell lysis. Altogether, the CVB3-induced cellular protrusions could function as a hitherto-unknown nonlytic mechanism of cell-to-cell transmission exploited by enteroviruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Enterovirus Humano B/patogenicidade , Infecções por Enterovirus/transmissão , Infecções por Enterovirus/virologia , Rim/ultraestrutura , Rim/virologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Enterovirus Humano B/fisiologia , Enterovirus Humano B/efeitos da radiação , Humanos , Imageamento Tridimensional , Rim/citologia , Microscopia Eletrônica
19.
Front Physiol ; 13: 934941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874533

RESUMO

Objectives: In thoracic aortic aneurysm (TAA) of the ascending aorta (AA), AA is progressively dilating due to the weakening of the aortic wall. Predicting and preventing aortic dissections and ruptures in TAA continues to be challenging, and more accurate assessment of the AA dilatation, identification of high-risk patients, and timing of repair surgery are required. We investigated whether wall shear stress (WSS) predicts pathological and biomechanical changes in the aortic wall in TAA. Methods: The study included 12 patients with bicuspid (BAV) and 20 patients with the tricuspid aortic valve (TAV). 4D flow magnetic resonance imaging (MRI) was performed a day before aortic replacement surgery. Biomechanical and histological parameters, including assessing of wall strength, media degeneration, elastin, and cell content were analyzed from the resected AA samples. Results: WSSs were greater in the outer curves of the AA compared to the inner curves in all TAA patients. WSSs correlated with media degeneration of the aortic wall (ρ = -0.48, p < 0.01), elastin content (ρ = 0.47, p < 0.01), and aortic wall strength (ρ = -0.49, p = 0.029). Subsequently, the media of the outer curves was thinner, more rigid, and tolerated lower failure strains. Failure values were shown to correlate with smooth muscle cell (SMC) density (ρ = -0.45, p < 0.02), and indicated the more MYH10+ SMCs the lower the strength of the aortic wall structure. More macrophages were detected in patients with severe media degeneration and the areas with lower WSSs. Conclusion: The findings indicate that MRI-derived WSS predicts pathological and biomechanical changes in the aortic wall in patients with TAA and could be used for identification of high-risk patients.

20.
Biomolecules ; 11(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802976

RESUMO

Molecular mechanisms involved in cardiac remodelling are not fully understood. To study the role of vascular endothelial growth factor receptor 1 (VEGFR-1) signaling in left ventricular hypertrophy (LVH) and heart failure, we used a mouse model lacking the intracellular VEGFR-1 tyrosine kinase domain (VEGFR-1 TK-/-) and induced pressure overload with angiotensin II infusion. Using echocardiography (ECG) and immunohistochemistry, we evaluated pathological changes in the heart during pressure overload and measured the corresponding alterations in expression level and phosphorylation of interesting targets by deep RNA sequencing and Western blot, respectively. By day 6 of pressure overload, control mice developed significant LVH whereas VEGFR-1 TK-/- mice displayed a complete absence of LVH, which correlated with significantly increased mortality. At a later time point, the cardiac dysfunction led to increased ANP and BNP levels, atrial dilatation and prolongation of the QRSp duration as well as increased cardiomyocyte area. Immunohistochemical analyses showed no alterations in fibrosis or angiogenesis in VEGFR-1 TK-/- mice. Mechanistically, the ablation of VEGFR-1 signaling led to significantly upregulated mTOR and downregulated PKCα phosphorylation in the myocardium. Our results show that VEGFR-1 signaling regulates the early cardiac remodelling during the compensatory phase of pressure overload and increases the risk of sudden death.


Assuntos
Morte Súbita , Hipertrofia Ventricular Esquerda/genética , Transdução de Sinais/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Western Blotting , Ecocardiografia , Eletrocardiografia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Pressão , Proteína Quinase C-alfa/metabolismo , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA