Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34535550

RESUMO

Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality. Here, we present genomic and transcriptomic data of three populations of the asexual oribatid mite species Oppiella nova and its sexual relative Oppiella subpectinata We document strikingly different patterns of haplotype divergence between the two species, strongly supporting Meselson effect-like evolution and long-term asexuality in O. nova: I) variation within individuals exceeds variation between populations in O. nova but vice versa in O. subpectinata; II) two O. nova sublineages feature a high proportion of lineage-specific heterozygous single-nucleotide polymorphisms (SNPs), indicating that haplotypes continued to diverge after lineage separation; III) the deepest split in gene trees generally separates the two haplotypes in O. nova, but populations in O. subpectinata; and IV) the topologies of the two haplotype trees match each other. Our findings provide positive evidence for the absence of canonical sex over evolutionary time in O. nova and suggest that asexual oribatid mites can escape the dead-end fate usually associated with asexual lineages.


Assuntos
Ácaros/genética , Reprodução Assexuada/genética , Ácaros e Carrapatos/genética , Animais , Evolução Molecular , Variação Genética/genética , Haplótipos/genética , Filogenia
2.
Proc Biol Sci ; 290(2007): 20230404, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37727092

RESUMO

Obligately parthenogenetic species are expected to be short lived since the lack of sex and recombination should translate into a slower adaptation rate and increased accumulation of deleterious alleles. Some, however, are thought to have been reproducing without males for millions of years. It is not clear how these old parthenogens can escape the predicted long-term costs of parthenogenesis, but an obvious explanation is cryptic sex. In this study, we screen for signatures of cryptic sex in eight populations of four parthenogenetic species of Timema stick insects, some estimated to be older than 1 Myr. Low genotype diversity, homozygosity of individuals and high linkage disequilibrium (LD) unaffected by marker distances support exclusively parthenogenetic reproduction in six populations. However, in two populations (namely, of the species Timema douglasi and T. monikensis) we find strong evidence for cryptic sex, most likely mediated by rare males. These populations had comparatively high genotype diversities, lower LD, and a clear LD decay with genetic distance. Rare sex in species that are otherwise largely parthenogenetic could help explain the unusual success of parthenogenesis in the Timema genus and raises the question whether episodes of rare sex are in fact the simplest explanation for the persistence of many old parthenogens in nature.


Assuntos
Insetos , Partenogênese , Humanos , Masculino , Animais , Feminino , Alelos , Genótipo , Desequilíbrio de Ligação , Insetos/genética
3.
Mol Ecol ; 30(3): 718-735, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33238067

RESUMO

The queen-worker caste system of eusocial insects represents a prime example of developmental polyphenism (environmentally-induced phenotypic polymorphism) and is intrinsic to the evolution of advanced eusociality. However, the comparative molecular basis of larval caste determination and subsequent differentiation in the eusocial Hymenoptera remains poorly known. To address this issue within bees, we profiled caste-associated gene expression in female larvae of the intermediately eusocial bumblebee Bombus terrestris. In B. terrestris, female larvae experience a queen-dependent period during which their caste fate as adults is determined followed by a nutrition-sensitive period also potentially affecting caste fate but for which the evidence is weaker. We used mRNA-seq and qRT-PCR validation to isolate genes differentially expressed between each caste pathway in larvae at developmental stages before and after each of these periods. We show that differences in gene expression between caste pathways are small in totipotent larvae, then peak after the queen-dependent period. Relatively few novel (i.e., taxonomically-restricted) genes were differentially expressed between castes, though novel genes were significantly enriched in late-instar larvae in the worker pathway. We compared sets of caste-associated genes in B. terrestris with those reported from the advanced eusocial honeybee, Apis mellifera, and found significant but relatively low levels of overlap of gene lists between the two species. These results suggest both the existence of low numbers of shared toolkit genes and substantial divergence in caste-associated genes between Bombus and the advanced eusocial Apis since their last common eusocial ancestor.


Assuntos
Abelhas , Comportamento Animal , Perfilação da Expressão Gênica , Animais , Abelhas/genética , Feminino , Expressão Gênica , Larva/genética
4.
BMC Res Notes ; 17(1): 123, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689371

RESUMO

OBJECTIVE: Study of the human infant gut microbiome requires the use of surrogate mammalian species such as mice. We sought to investigate the usefulness of the greater wax moth larva, Galleria mellonella, as an alternative. RESULTS: We have analysed the native gut microbiome of Galleria and developed methods for clearing the native microbiome and introducing species from human infant faecal samples. We find that some species, e.g. enterococci, are more successful at recolonisation, but that others, e.g. Bifidobacterium, are less so. The work paves the way for using Galleria rather than mice in this and similar work.


Assuntos
Fezes , Microbioma Gastrointestinal , Larva , Mariposas , Animais , Microbioma Gastrointestinal/fisiologia , Humanos , Mariposas/microbiologia , Larva/microbiologia , Lactente , Fezes/microbiologia , Bifidobacterium/isolamento & purificação , Enterococcus/isolamento & purificação
5.
Evolution ; 78(6): 1109-1120, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38501929

RESUMO

Reproduction is a key feature of all organisms, yet the way in which it is achieved varies greatly across the tree of life. One striking example of this variation is the stick insect genus Bacillus, in which five different reproductive modes have been described: sex, facultative and obligate parthenogenesis, and two highly unusual reproductive modes: hybridogenesis and androgenesis. Under hybridogenesis, the entire genome from the paternal species is eliminated and replaced each generation by mating with the corresponding species. Under androgenesis, an egg is fertilized, but the developing diploid offspring bear two paternal genomes and no maternal genome, as a consequence of unknown mechanisms. Here, we reevaluate the previous descriptions of Bacillus lineages and the proposed F1 hybrid ancestries of the hybridogenetic and obligately parthenogenetic lineages (based on allozymes and karyotypes) from Sicily, where all these reproductive modes are found. We generate a chromosome-level genome assembly for a facultative parthenogenetic species (B. rossius) and combine extensive field sampling with RADseq and mtDNA data. We identify and genetically corroborate all previously described species and confirm the ancestry of hybrid lineages. All hybrid lineages have fully retained their F1 hybrid constitution throughout the genome, indicating that the elimination of the paternal genome in hybridogens is always complete and that obligate parthenogenesis in Bacillus hybrid species is not associated with an erosion of heterozygosity as known in other hybrid asexuals. Our results provide a stepping stone toward understanding the transitions between reproductive modes and the proximate mechanisms of genome elimination.


Assuntos
Partenogênese , Animais , Masculino , Insetos/genética , Feminino , Evolução Biológica , Genoma de Inseto , Reprodução , Hibridização Genética , DNA Mitocondrial/genética
6.
PLoS Comput Biol ; 8(7): e1002592, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829756

RESUMO

We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed.


Assuntos
Formigas/fisiologia , Comportamento Animal/fisiologia , Modelos Biológicos , Animais , Biologia Computacional , Simulação por Computador , Retroalimentação Fisiológica/fisiologia , Feromônios/análise , Feromônios/química , Feromônios/metabolismo
7.
J Econ Entomol ; 106(5): 2216-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24224267

RESUMO

Invasive species cause severe environmental and economic problems. The invasive success of social insects often appears to be related to their ability to adjust their social organization to new environments. To gain a better understanding of the biology of invasive termites, this study investigated the social organization of the subterranean termite, Reticulitermes urbis, analyzing the breeding structure and the number of reproductives within colonies from three introduced populations. By using eight microsatellite loci to determine the genetic structure, it was found that all the colonies from the three populations were headed by both primary reproductives (kings and queens) and secondary reproductives (neotenics) to form extended-family colonies. R. urbis appears to be the only Reticulitermes species with a social organization based solely on extended-families in both native and introduced populations, suggesting that there is no change in their social organization on introduction. F-statistics indicated that there were few neotenics within the colonies from urban areas, which did not agree with results from previous studies and field observations. This suggests that although several neotenics may be produced, only few become active reproductives. The results also imply that the invasive success of R. urbis may be based on different reproductive strategies in urban and semiurbanized areas. The factors influencing an individual to differentiate into a neotenic in Reticulitermes species are discussed.


Assuntos
Isópteros/genética , Repetições de Microssatélites , Animais , Feminino , França , Genótipo , Espécies Introduzidas , Isópteros/fisiologia , Itália , Masculino , Reação em Cadeia da Polimerase , Dinâmica Populacional , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA