Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant Cell Environ ; 40(8): 1592-1608, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28382683

RESUMO

In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.


Assuntos
Agricultura , Coffea/fisiologia , Coffea/efeitos da radiação , Agricultura Florestal , Luz , Biomassa , Modelos Lineares , Microclima , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Árvores/fisiologia , Árvores/efeitos da radiação
2.
Glob Chang Biol ; 22(10): 3444-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27272707

RESUMO

The onset of the growing season of trees has been earlier by 2.3 days per decade during the last 40 years in temperate Europe because of global warming. The effect of temperature on plant phenology is, however, not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud endodormancy, and, on the other hand, higher temperatures are necessary to promote bud cell growth afterward. Different process-based models have been developed in the last decades to predict the date of budbreak of woody species. They predict that global warming should delay or compromise endodormancy break at the species equatorward range limits leading to a delay or even impossibility to flower or set new leaves. These models are classically parameterized with flowering or budbreak dates only, with no information on the endodormancy break date because this information is very scarce. Here, we evaluated the efficiency of a set of phenological models to accurately predict the endodormancy break dates of three fruit trees. Our results show that models calibrated solely with budbreak dates usually do not accurately predict the endodormancy break date. Providing endodormancy break date for the model parameterization results in much more accurate prediction of this latter, with, however, a higher error than that on budbreak dates. Most importantly, we show that models not calibrated with endodormancy break dates can generate large discrepancies in forecasted budbreak dates when using climate scenarios as compared to models calibrated with endodormancy break dates. This discrepancy increases with mean annual temperature and is therefore the strongest after 2050 in the southernmost regions. Our results claim for the urgent need of massive measurements of endodormancy break dates in forest and fruit trees to yield more robust projections of phenological changes in a near future.


Assuntos
Aquecimento Global , Árvores , Clima , Europa (Continente) , Estações do Ano
3.
Plant Cell Environ ; 35(1): 150-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21902698

RESUMO

Adequate radial water transport between elastic bark tissue and xylem is crucial in trees, because it smoothens abrupt changes in xylem water potential, greatly reducing the likelihood of suffering dangerous levels of embolism. The radial hydraulic conductance involved is generally thought to be constant. Evidence collected about variable root and leaf hydraulic conductance led us to speculate that radial hydraulic conductance in stem/branches might also be variable and possibly modulated by putative aquaporins. We therefore correlated diameter changes in walnut (Juglans regia L.) with changes in water potential, altered by perfusion of twig samples with D-mannitol solutions having different osmotic potentials. Temperature and cycloheximide (CHX; a protein synthesis inhibitor) treatments were performed. The temperature response and diameter change inhibition found in CHX-treated twigs underpinned our hypothesis that radial hydraulic conductance is variable and likely mediated by a putative aquaporin abundance and/or activity. Our data demonstrate that radial water transport in stem/branches can take two routes in parallel: an apoplastic and a cell-to-cell route. The contribution of either route depends on the hydraulic demand and is closely linked to a boost of putative aquaporins, causing radial conductance to be variable. This variability should be considered when interpreting and modelling diameter changes.


Assuntos
Aquaporinas/metabolismo , Juglans/anatomia & histologia , Juglans/fisiologia , Casca de Planta/fisiologia , Transpiração Vegetal/fisiologia , Xilema/fisiologia , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cicloeximida/farmacologia , Juglans/efeitos dos fármacos , Modelos Biológicos , Casca de Planta/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Temperatura , Árvores/anatomia & histologia , Árvores/efeitos dos fármacos , Árvores/fisiologia , Água/fisiologia , Xilema/efeitos dos fármacos
4.
Int J Biometeorol ; 55(6): 763-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21805380

RESUMO

As observed for most stresses, tree frost resistance can be split into two main processes: avoidance and tolerance. Avoidance of freezing is achieved by introducing species only in the climatic context in which the probability of freezing events is very low for the sensitive stages of buds or stems; i.e., when good synchronism exists between the annual cycle and the critical climatic periods. Buds become able to grow only after chilling requirements have been satisfied (endodormancy released) during winter; they subsequently break after heat requirements have been completed (end of ecodormancy) in early spring. Actually, this period is often subject to more or less severe freezing events. Trees are also able to adjust their freezing tolerance by increasing their capacity of extracellular freezing and decreasing the possibility of intracellular freezing through the process of frost acclimation. Both freezing resistance processes (avoidance and tolerance) are environmentally driven (by photoperiod and temperature), but there are also genotypic effects among species or cultivars. Here, we evaluated the degree to which differences in dormancy release and frost acclimation were related to environmental and genetic influences by comparing trees growing in common garden conditions. This investigation was carried out for two winters in lowland and mountain locations on different walnut genotypes differing significantly for budburst dates. Chilling requirement for endodormancy release and heat requirement during ecodormancy were evaluated in all situations. In addition, frost acclimation was assessed by the electrolyte leakage method on stems from the same trees before leaf fall through budburst. No significant differences were observed in chilling requirements among genotypes. Moreover, frost acclimation dynamics were similar between genotypes or locations when expressed depending on chilling units accumulated since 15 September as a time basis instead of Julian day. The only exception was for maximal frost hardiness observed during winter with the timber-oriented being significantly more resistant than fruit-oriented genotypes. Heat requirement was significantly different among genotypes. Thus, growth was significantly faster in fruit-oriented than in wood-oriented genotypes. Furthermore, among wood-oriented genotypes, differences in growth rate were observed only at cold temperatures. Frost acclimation changes differed significantly between fruit- and wood- walnuts from January through budburst. In conclusion, from September through January, the acclimation dynamic was driven mainly by environmental factors whereas from January through budburst a significant genotype effect was identified in both frost tolerance and avoidance processes.


Assuntos
Aclimatação , Ecossistema , Juglans/fisiologia , Temperatura Baixa , Genótipo , Juglans/genética , Juglans/crescimento & desenvolvimento , Fotoperíodo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Estações do Ano , Fatores de Tempo
5.
Tree Physiol ; 41(9): 1583-1600, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-33611596

RESUMO

Predicting tree frost tolerance is critical to select adapted species according to both the current and predicted future climate. The relative change in water to carbohydrate ratio is a relevant trait to predict frost acclimation in branches from many tree species. The objective of this study is to demonstrate the interspecific genericity of this approach across nine tree species. In the studied angiosperm species, frost hardiness dynamics were best correlated to a decrease in water content at the early stage of acclimation (summer and early autumn). Subsequently, frost hardiness dynamics were more tightly correlated to soluble carbohydrate contents until spring growth resumption. Based on different model formalisms, we predicted frost hardiness at different clade levels (angiosperms, family, genus and species) with high to moderate accuracy (1.5-6.0 °C root mean squared error (RMSE)) and robustness (2.8-6.1 °C prediction RMSE). The TOT model, taking all soluble carbohydrate and polyols into account, was more effective and adapted for large scale studies aiming to explore frost hardiness across a wide range of species. The ISC model taking the individual contribution of each soluble carbohydrate molecule into account was more efficient at finer scale such as family or species. The ISC model performance also suggests that the role of solutes cannot be reduced to a 'bulk' osmotic effect as could be computed if all of them were located in a single, common, compartment. This study provides sets of parameters to predict frost hardiness in a wide range of species, and clues for targeting specific carbohydrate molecules to improve frost hardiness.


Assuntos
Árvores , Água , Aclimatação , Carboidratos , Estações do Ano
6.
Ann Bot ; 105(2): 341-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19995809

RESUMO

BACKGROUND AND AIMS: In rain forests, sapling survival is highly dependent on the regulation of trunk slenderness (height/diameter ratio): shade-intolerant species have to grow in height as fast as possible to reach the canopy but also have to withstand mechanical loadings (wind and their own weight) to avoid buckling. Recent studies suggest that mechanosensing is essential to control tree dimensions and stability-related morphogenesis. Differences in species slenderness have been observed among rainforest trees; the present study thus investigates whether species with different slenderness and growth habits exhibit differences in mechanosensitivity. METHODS: Recent studies have led to a model of mechanosensing (sum-of-strains model) that predicts a quantitative relationship between the applied sum of longitudinal strains and the plant's responses in the case of a single bending. Saplings of five different neotropical species (Eperua falcata, E. grandiflora, Tachigali melinonii, Symphonia globulifera and Bauhinia guianensis) were subjected to a regimen of controlled mechanical loading phases (bending) alternating with still phases over a period of 2 months. Mechanical loading was controlled in terms of strains and the five species were subjected to the same range of sum of strains. The application of the sum-of-strain model led to a dose-response curve for each species. Dose-response curves were then compared between tested species. KEY RESULTS: The model of mechanosensing (sum-of-strain model) applied in the case of multiple bending as long as the bending frequency was low. A comparison of dose-response curves for each species demonstrated differences in the stimulus threshold, suggesting two groups of responses among the species. Interestingly, the liana species B. guianensis exhibited a higher threshold than other Leguminosae species tested. CONCLUSIONS: This study provides a conceptual framework to study variability in plant mechanosensing and demonstrated interspecific variability in mechanosensing.


Assuntos
Árvores/fisiologia , Fenômenos Biomecânicos , Clima Tropical
7.
Tree Physiol ; 30(12): 1555-69, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21030404

RESUMO

It has been hypothesized that the increase in temperature in this century could lead to an increase in frost damage to plant tissues. Several models have been proposed to describe the development of cold hardiness, but never taking into account extreme climatic and/or physiological events. Our results on walnut tree (Juglans regia L.) show that cold hardiness was best correlated with average daily temperatures minimal temperatures over the last 15 days before sampling (T(min 15 days)), indicating that the freezing tolerance depended on the tree's climatic history. Moreover, this study also shows that the accumulation of sucrose and the water content (WC) decrease are an essential step towards cold hardiness. Thus, a simple linear model based on climatic (T(min 15 days)) and physiological (soluble sugars, WC) explanatory variables was developed to predict the cold hardiness level in walnut stem at any time during the leafless period. Each of the three input variables can be assigned a specific role contributing to the simulated function, cold hardiness. The extent and robustness of this relation was assessed on extreme physiological events on walnut trees bearing three main branches. On each tree, one branch was defoliated to limit the local carbohydrate and transpiration, one was girdled to increase local carbohydrate and prevent carbohydrate export and the third one was kept untreated as control. As expected, these treatments impacted both local carbon reserves and WC in the stems born by each main branch in comparison with the control on the same tree. The impact of these treatments on stem's freezing tolerance, as evaluated by an electrolyte leakage method (LT50), confirmed the direct impact of soluble sugar and WC on cold hardiness over a wide range of carbohydrate and WC. This is discussed in relation to the branch autonomy theory for carbon but also for water during summer growth and winter periods. The present study demonstrates the importance of physiological parameters in the prediction of cold hardiness and proposes a way to model cold hardiness with extreme climatic and/or physiological events.


Assuntos
Temperatura Baixa , Juglans/fisiologia , Modelos Biológicos , Mudança Climática , Ecossistema , Fatores de Tempo
8.
Tree Physiol ; 30(1): 89-102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19955192

RESUMO

Bud break pattern is a key determinant of tree architecture. The mechanisms leading to the precedence of certain buds over the others are not yet fully explained, but the availability of soluble sugars may play a significant role, especially those in the xylem sap at the onset of the growing period. Here, we measured carbon availability in the different tissues (bud, xylem and bark). To assess the capacity of buds to use the xylem sap carbohydrates, the fluxes between xylem vessels and parenchyma cells, bark and buds of walnut (Juglans regia cv 'Franquette') were measured during the rest period until bud break. This uptake capacity varies according to the temperature, the sugar and the position on the branch of the fragment studied. Between December and March, in xylem tissues, the active component of sucrose uptake was predominant compared with diffusion (90% of the total uptake), whereas the active component accounted for more moderate amounts in buds (50% of the uptake). The active uptake of hexoses took place belatedly (April) in xylem. The flow rates between xylem vessels and buds increased 1 month before bud break and reached 2000 microg sucrose h(-)(1) g DW(-)(1). Fluxes seemed to depend on bud position on the branch. However, this study strongly suggests that they were mainly dependent on the sink strength of the buds and on the sink competition between bud, xylem parenchyma and bark.


Assuntos
Metabolismo dos Carboidratos , Flores/metabolismo , Juglans/metabolismo , Caules de Planta/metabolismo , Xilema/metabolismo , Transporte Biológico , Glucose/metabolismo , Hexoses/metabolismo , Cinética , Estações do Ano , Sacarose/metabolismo
9.
Ann Bot ; 104(4): 635-47, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19567416

RESUMO

BACKGROUND AND AIMS: The major economic product of Hevea brasiliensis is a rubber-containing cytoplasm (latex), which flows out of laticifers (latex cells) when the bark is tapped. The latex yield is stimulated by ethylene. Sucrose, the unique precursor of rubber synthesis, must cross the plasma membrane through specific sucrose transporters before being metabolized in the laticifers. The relative importance of sucrose transporters in determining latex yield is unknown. Here, the effects of ethylene (by application of Ethrel on sucrose transporter gene expression in the inner bark tissues and latex cells of H. brasiliensis are described. METHODS: Experiments, including cloning sucrose transporters, real time RT-PCR and in situ hybridization, were carried out on virgin (untapped) trees, treated or untreated with the latex yield stimulant Ethrel. KEY RESULTS: Seven putative full-length cDNAs of sucrose transporters were cloned from a latex-specific cDNA library. These transporters belong to all SUT (sucrose transporter) groups and differ by their basal gene expression in latex and inner soft bark, with a predominance of HbSUT1A and HbSUT1B. Of these sucrose transporters, only HbSUT1A and HbSUT2A were distinctly increased by ethylene. Moreover, this increase was shown to be specific to laticifers and to ethylene application. CONCLUSION: The data and all previous information on sucrose transport show that HbSUT1A and HbSUT2A are related to the increase in sucrose import into laticifers, required for the stimulation of latex yield by ethylene in virgin trees.


Assuntos
Etilenos/farmacologia , Hevea/citologia , Hevea/metabolismo , Látex/biossíntese , Sacarose/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Transporte Biológico/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Hevea/enzimologia , Hevea/genética , Hibridização In Situ , Látex/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos/efeitos dos fármacos , Filogenia , Casca de Planta/efeitos dos fármacos , Casca de Planta/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Árvores/efeitos dos fármacos , Árvores/genética
10.
Methods Mol Biol ; 2014: 371-386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31197809

RESUMO

Modeling is a fundamental part of quantitative science used to bring together several quantitative components, often developed though detailed reductionist approach on component parts, e.g., sucrose transport through a membrane osmotic relation. It is now generally accepted that phloem transport is the result of bulk solution flow generated by the difference in osmotic pressure between source and sink tissues. However, there is still little agreement on how different sink tissues compete for available carbohydrate. Furthermore, the impact of phloem pathway leakage (unloading) and reloading on source-to-sink carbon transport remains unclear. Moreover, it is debated to what degree the interactions between phloem and xylem flows influence carbohydrate source-sink relations. These aspects are extremely difficult to research by a reductionist approach, with modeling being an important tool to examine the consequences of proposed mechanisms, which can then be tested on whole plants.Phloem/xylem modeling has been at the limits of quantitative modeling, especially when dynamic models are needed to explain tracer studies. Advances in computing now enable more realistic modeling, which are utilized by the PiafMunch approach described here. This model enables a high level of mechanistic detail to be incorporated and the observable effect of it to be tested. In the most recent version of the software with the introduction of tracer dynamics, it can now predict the effects of specific phloem mechanisms upon the shape of evolving tracer profiles.


Assuntos
Carbono/metabolismo , Modelos Biológicos , Floema/metabolismo , Algoritmos , Transporte Biológico , Metabolismo dos Carboidratos
11.
Front Plant Sci ; 9: 1746, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568664

RESUMO

The leafless period is often considered as inactive, although trees have to actively modulate their metabolism through the cold acclimation/deacclimation processes, to cope with frost exposure during winter and to restore growth ability in spring. Carbon metabolism is a key component of these processes through the osmotic control of extracellular ice formation and the trophic control of bud growth. The influence of temperature on the inter-conversion between starch and soluble carbohydrate has been evidenced for years, but we are currently missing an operational tool to predict starch vs. soluble carbohydrate contents during this period, which should allow to better predict frost hardiness. For this purpose, we exposed 1-year-old branches of Juglans regia to constant temperature for one to 3 weeks and measured the changes in carbohydrate composition at three periods (autumn, winter, and spring). As expected, the temperature significantly affected the changes in carbohydrate composition, but the water content and the sampling period were also relevant. Higher starch hydrolysis was observed at low temperature (<5°C) for all sampling periods. Starch hydrolysis was also observed at warm temperature, but in autumn only. These data were used to compare three modeling approaches simulating the changes in carbohydrate composition through enzymatic analogy. The most empirical and the most mechanistic approach did not succeed to simulate external observations (Root Mean Standard Error of Prediction (RMSEP) > 30 mg.g DM-1, Efficiency (Eff) <0), whereas the intermediate model was more efficient (RMSEP = 15.19 mg.g DM-1, Eff = 0.205 and 16.61 mg.g DM-1, Eff = 0.366, for GFS (Glucose + Fructose + Sucrose) and starch, respectively). The accuracy of the model was further improved when using field data for calibration (RMSEP = 5.86 mg.g DM-1, Eff = 0.962; RMSEP = 10.56 mg.g DM-1, Eff = 0.752, for GFS and starch, respectively). This study provided an operative tool to simulate carbohydrate dynamics over leafless period that could predict frost hardiness with approx. 3.4°C accuracy with temperature, water content and initial starch and soluble carbohydrate measurements. It should now be tested under various meteorological conditions and biological systems.

12.
Tree Physiol ; 27(10): 1471-80, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17669737

RESUMO

Plasma membrane H+-ATPase (PM H+-ATPase) plays a key role in nutrient transport, stress responses and growth. To evaluate proton motive force differences between apical and basal parts of acrotonic 1-year-old shoots of walnut (Juglans regia L. cv 'Franquette') trees, spatial and seasonal changes in PM H+-ATPase were studied in mature xylem tissues. During both the dormancy and growth resumption periods, and in both the apical and basal parts of the stem, PM H+-ATPase activity showed positive correlations with the amount of immunodetectable protein. In spring, at the time of growth resumption, higher activities and immunoreactivities of PM H+-ATPase were found in the apical part of the stem than in the basal part of the stem. In spring, the decrease in xylem sugar concentration reflected the high sugar uptake rate. Our data suggest that PM H+-ATPase plays a major role in the uptake of carbohydrates from xylem vessels during growth resumption. These results are discussed in the context of the acrotonic tendency of walnut shoots.


Assuntos
Membrana Celular/enzimologia , Juglans/enzimologia , Caules de Planta/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Xilema/enzimologia , Carboidratos , Clonagem Molecular , DNA Complementar , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Juglans/genética , Microscopia de Fluorescência , Transporte Proteico , ATPases Translocadoras de Prótons/genética , RNA Mensageiro/metabolismo , RNA de Plantas , Estações do Ano , Xilema/citologia
13.
Funct Plant Biol ; 44(5): 507-514, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32480583

RESUMO

It is now accepted that the transport phloem, linking major sources and sinks, is leaky, and this leakage can be considerable. Hence for phloem transport to function over the long distances observed, a large fraction of this unloaded photosynthate must be reloaded. A fraction of this unloaded solute is used to maintain tissues surrounding the phloem, as well as being stored. Also, pathway unloading/reloading acts as a short-term buffer to source and sink changes. In this work we present the first attempt to include both pathway unloading and reloading of carbohydrate in the modelling of pressure driven flow to determine if this has any significant effect upon source-sink dynamics. Our results indicated that the flow does not follow Poiseuille dynamics, and that pathway unloading alters the solute concentration and hydrostatic pressure profiles. Hence, measurement of either of these without considerable other detail tells us very little about the flow mechanisms. With adequate reloading along the pathway, the effects of pathway unloading can completely compensate for, making the entire system look like one with no pathway unloading.

14.
Nat Commun ; 8(1): 1014, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044122

RESUMO

Trees are self-similar structures: their branch lengths and diameters vary allometrically within the tree architecture, with longer and thicker branches near the ground. These tree allometries are often attributed to optimisation of hydraulic sap transport and safety against elastic buckling. Here, we show that these allometries also emerge from a model that includes competition for light, wind biomechanics and no hydraulics. We have developed MECHATREE, a numerical model of trees growing and evolving on a virtual island. With this model, we identify the fittest growth strategy when trees compete for light and allocate their photosynthates to grow seeds, create new branches or reinforce existing ones in response to wind-induced loads. Strikingly, we find that selected trees species are self-similar and follow allometric scalings similar to those observed on dicots and conifers. This result suggests that resistance to wind and competition for light play an essential role in determining tree allometries.


Assuntos
Magnoliopsida/fisiologia , Traqueófitas/fisiologia , Árvores/fisiologia , Fenômenos Biomecânicos , Ecossistema , Luz , Magnoliopsida/química , Magnoliopsida/efeitos da radiação , Modelos Biológicos , Traqueófitas/química , Traqueófitas/efeitos da radiação , Árvores/química , Árvores/efeitos da radiação , Vento
15.
Tree Physiol ; 26(12): 1579-87, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17169897

RESUMO

Rubber tree (Hevea brasiliensis Müll. Arg.) radial growth dynamics were monitored with displacement sensors, together with latex production, to investigate three aspects of the dual production of latex and wood: (1) the usefulness of fine-scale dendrometric measurements as a physiological tool to detect water shortage through radial growth; (2) the dynamic aspects, both at the seasonal and at the multi-year scale, of the competition between latex and wood production; and (3) the spatial distribution of radial growth rates around the tapping cut. Radial growth of untapped control trees started with the onset of the rainy season and lasted until the onset of the dry season, ceasing completely during the driest period. Displacement sensors provided a sensitive means of detecting water shortage, with a clear correlation between diameter variations and changes in water availability (both daily evapotranspiration and monthly rainfall) over the whole annual cycle. However, the correlation was significantly disturbed in tapped trees. After resumption of tapping, the radial growth rate dropped sharply within two weeks and the effect persisted throughout the whole season, so that the cumulative growth of tapped trees was about half that of untapped trees, with the cumulative growth deficit reaching 80% for the period from mid-June to November. This long-known negative impact of tapping on growth was much stronger in the second year of tapping than in the first, whereas latex production increased significantly between the first and second year of tapping. The increased latex production, which could not be ascribed to climatic conditions, shows that the establishment of an artificial latex sink is a progressive, long-term process likely involving many aspects of metabolism. As expected, ethylene significantly increased latex production in both years; however, ethylene had no effect on the growth rates of tapped trees. Radial growth was differentially affected at different locations around the tapping cut, with growth rates significantly lower in the tapped panel than in the untapped panel, and higher above the cut than below the cut. Thus, caution is needed when deriving whole stem wood production from girth measurements at one location on the stem, especially from girth measurements made close to the tapping cut. This also provides new evidence for the location of the latex regeneration area in the tapped panel, below the cut.


Assuntos
Hevea/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Borracha , Agricultura/métodos , Biomassa , Estações do Ano
16.
Tree Physiol ; 35(11): 1146-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26423132

RESUMO

Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carboidratos/química , Laboratórios/normas , Árvores/química , Técnicas de Química Analítica , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Especificidade da Espécie , Amido , Árvores/metabolismo
17.
Tree Physiol ; 22(17): 1211-20, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12464574

RESUMO

Xylem vessels of Prunus persica Batsch (peach) and Juglans regia L. (walnut) are vulnerable to frost-induced embolism. In peach, xylem embolism increased progressively over the winter, reaching a maximum of 85% loss of hydraulic conductivity (PLC) in early March. Over winter, PLC in walnut approached 100%, but the degree of xylem embolism varied during the winter, reflecting the ability of walnut to generate positive xylem pressures in winter and spring. In contrast, positive xylem pressures were not observed in peach. Controlled freeze-thaw experiments showed that frost alone is insufficient to increase embolism in peach; evaporative conditions during thawing are also required. However, when both species were protected from frost, PLC was zero. At bud break, there was complete recovery from embolism in walnut, whereas PLC remained high in peach. Three mechanisms responsible for the restoration of branch hydraulic conductivity were identified in walnut: the development of stem pressure, the development of root pressure and the formation of a new ring of functional xylem, whereas only one mechanism was observed in peach (new functional ring). The climatic conditions necessary for the manifestation of these mechanisms were investigated.


Assuntos
Juglans/fisiologia , Prunus/fisiologia , Árvores/fisiologia , Juglans/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Prunus/crescimento & desenvolvimento , Estações do Ano , Árvores/crescimento & desenvolvimento , Água/fisiologia , Tempo (Meteorologia)
18.
Tree Physiol ; 24(7): 785-93, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15123450

RESUMO

We studied the effect of temperature on the carbohydrate status of parenchyma cells during winter in relation to the efflux and influx of sugars between parenchyma cells and xylem vessels in 1-year-old twigs of walnut (Juglans regia L.). The mechanism of sugar transfer between contact cells and vessels was also investigated. We obtained new insights into the possible osmotic role of sugars, particularly sucrose, in stem pressure formation and winter embolism repair. Accumulation of sucrose in the xylem sap during winter was mainly influenced by: (1) abundant conversion of starch to sucrose in the symplast at low temperatures; (2) sucrose efflux into the apoplast at low temperatures (1 degrees C); and (3) inefficient sugar uptake at low temperatures, although efficient sugar uptake occurred at 15 degrees C. We hypothesize that a diethyl pyrocarbonate (DEPC)-sensitive protein mediates facilitated diffusion of sucrose from parenchyma cells to xylem vessels (efflux) in walnut. We discuss the possible occurrence of active H+-sucrose symports and the coexistence of both influx and efflux processes in walnut in winter and the modulation of the relative importance of these flows by temperature.


Assuntos
Juglans/fisiologia , Árvores/fisiologia , Carboidratos/fisiologia , Modelos Biológicos , Concentração Osmolar , Caules de Planta/fisiologia , Estações do Ano , Temperatura
19.
Tree Physiol ; 24(1): 99-105, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14652219

RESUMO

We studied seasonal variation in xylem sap pH of Juglans regia L. Our main objectives were to (1) test the effect of temperature on seasonal changes in xylem sap pH and (2) study the involvement of plasma membrane H+-ATPase of vessel-associated cells in the control of sap pH. For this purpose, orchard-grown trees were compared with trees grown in a heated (> or = 15 degrees C) greenhouse. During autumn, sap pH was not directly influenced by temperature. A seasonal change in H+-ATPase activity resulting from seasonal variation in the amount of protein was measured in orchard-grown trees, whereas no significant seasonal changes were recorded in greenhouse-grown trees. Our data suggest that H+-ATPase does not regulate xylem sap pH directly by donating protons to the xylem, but by facilitating secondary active H+/sugar transport, among other mechanisms.


Assuntos
Juglans/fisiologia , ATPases Translocadoras de Prótons/fisiologia , Árvores/fisiologia , Concentração de Íons de Hidrogênio , Juglans/enzimologia , Estações do Ano , Árvores/enzimologia
20.
Tree Physiol ; 33(11): 1229-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24271086

RESUMO

In the literature, frost hardiness (FH) studies in trees have often been restricted to one organ (buds, leaves, needles or twigs). To extend our knowledge and gain a unified view, FH differences between organs and tissues or throughout the life of the tree have to be characterized in relation to physiological changes. In this study, different organs and tissues of young potted and mature orchard walnut trees (Juglans regia L.) were compared for seasonal changes in FH during different years. FH was assessed using the electrolyte leakage method. Physiological parameters were concomitantly monitored focusing on two significant traits: water content (WC) and carbohydrate content (glucose + fructose + sucrose, GFS). No seasonal variation in FH was observed in the root system, but acclimation and deacclimation were observed aboveground. Among organs and tissues, cold sensitivity levels were different in deep winter, with buds most sensitive and bark most resistant, but acclimation/deacclimation dynamics followed similar patterns. Physiological variation was also similar among organs: FH increased when WC decreased and/or soluble carbohydrates increased. Based on these results, relations between soluble carbohydrate content, WC and FH were calculated independently or in interaction. The key results were that: (i) the relationship between FH and physiological parameters (GFS and WC), which had previously been shown for branches only, could be generalized to all aboveground organs; (ii) lower WC increased the cryoprotective effect of GFS, showing a synergic effect of the two factors; (iii) the best fit was a non-linear function of WC and GFS, yielding a predictive model with an root mean square error of 5.07 °C on an independent dataset and 2.59 °C for the most sensitive stages; and (iv) the same parameters used for all organs yielded a unified model of FH depending on physiology, although the variability of GFS or WC was wide. The model should be of value for predicting FH in walnut independently of previous growing conditions (i.e., after sublethal stress accumulation).


Assuntos
Carboidratos/fisiologia , Juglans/fisiologia , Modelos Biológicos , Água/fisiologia , Aclimatação , Carboidratos/análise , Temperatura Baixa , Casca de Planta/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Estações do Ano , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA