Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Discov Med ; 29(156): 41-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598862

RESUMO

The new immunosenescence paradigm (2015) was an attempt to explain a mechanism by which macrophages could be immunosuppressed and dysfunctional, yet paradoxically release proinflammatory factors in an unregulated manner. This mechanism was linked to the loss of dehydroepiandrosterone (DHEA) with aging and thus explained how immunosenescence could be causally related to the risk of stress and/or age-associated chronic diseases. At the center of this paradigm was lipid body negative (LB-) foamy macrophage (CD14+CD16+) which produced human endogenous retrovirus K102 (HERV-K102) particles. HERV-K102 may be a protector foamy virus of humans, and its induction may generate trained innate immunity, a special type of autoimmunity, in response to intracellular pathogens, their constituents, toxins, and/or tumors. Overwhelming evidence now suggests that the proinflammatory foamy macrophages driving ASCVD are LB-. Moreover, the monocyte/macrophage phenotype implicated in atherosclerosis-cardiovascular disease (ASCVD) appears to be the CD14+CD16+ intermediate phenotype. These and other observations directly challenge the cholesterol hypothesis. For the prevention and treatment of ASCVD, it is important to address the putative cause of ASCVD -- immunosenescence, rather than the signs or symptoms such as inflammation or elevated cholesterol. Therefore, strategies to reverse or prevent immunosenescence, which improve or maintain an optimal cortisol/DHEA ratio such as isoflavonoids, would be expected to alleviate not only ASCVD but the risk of many other age-associated chronic diseases. Here, the new immunosenescence paradigm will be appraised for its suitability to explain ASCVD risks.


Assuntos
Aterosclerose/imunologia , Fatores Imunológicos/uso terapêutico , Imunossenescência/imunologia , Macrófagos/imunologia , Extratos Vegetais/uso terapêutico , Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Autoantígenos/imunologia , Doença Crônica/tratamento farmacológico , Desidroepiandrosterona/sangue , Desidroepiandrosterona/metabolismo , Retrovirus Endógenos/imunologia , Humanos , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Imunossenescência/efeitos dos fármacos , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , Extratos Vegetais/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Vírus Espumoso dos Símios/imunologia , Resultado do Tratamento
2.
Vaccine ; 37(38): 5796-5802, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30497831

RESUMO

Live viral vectors that express heterologous antigens of the target pathogen are being investigated in the development of novel vaccines against serious infectious agents like HIV and Ebola. As some live recombinant vectored vaccines may be replication-competent, a key challenge is defining the length of time for monitoring potential adverse events following immunization (AEFI) in clinical trials and epidemiologic studies. This time period must be chosen with care and based on considerations of pre-clinical and clinical trials data, biological plausibility and practical feasibility. The available options include: (1) adapting from the current relevant regulatory guidelines; (2) convening a panel of experts to review the evidence from a systematic literature search to narrow down a list of likely potential or known AEFI and establish the optimal risk window(s); and (3) conducting "near real-time" prospective monitoring for unknown clustering's of AEFI in validated large linked vaccine safety databases using Rapid Cycle Analysis for pre-specified adverse events of special interest (AESI) and Treescan to identify previously unsuspected outcomes. The risk window established by any of these options could be used along with (4) establishing a registry of clinically validated pre-specified AESI to include in case-control studies. Depending on the infrastructure, human resources and databases available in different countries, the appropriate option or combination of options can be determined by regulatory agencies and investigators.


Assuntos
Imunização , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Sistemas de Notificação de Reações Adversas a Medicamentos , Animais , Seguimentos , Humanos , Imunização/efeitos adversos , Esquemas de Imunização , Imunogenicidade da Vacina , Vigilância da População , Guias de Prática Clínica como Assunto , Sistema de Registros , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos
3.
Vaccine ; 34(51): 6617-6625, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27317264

RESUMO

Vaccines are one of the most effective public health medicinal products with an excellent safety record. As vaccines are produced using biological materials, there is a need to safeguard against potential contamination with adventitious agents. Adventitious agents could be inadvertently introduced into a vaccine through starting materials used for production. Therefore, extensive testing has been recommended at specific stages of vaccine manufacture to demonstrate the absence of adventitious agents. Additionally, the incorporation of viral clearance steps in the manufacturing process can aid in reducing the risk of adventitious agent contamination. However, for live viral vaccines, aside from possible purification of the virus or vector, extensive adventitious agent clearance may not be feasible. In the event that an adventitious agent is detected in a vaccine, it is important to determine its origin, evaluate its potential for human infection and pathology, and discern which batches of vaccine may have been affected in order to take risk mitigation action. To achieve this, it is necessary to have archived samples of the vaccine and ancillary components, ideally from developmental through to current batches, as well as samples of the biological materials used in the manufacture of the vaccine, since these are the most likely sources of an adventitious agent. The need for formal guidance on such vaccine sample archiving has been recognized but not fulfilled. We summarize in this paper several prior major cases of vaccine contamination with adventitious agents and provide points for consideration on sample archiving of live recombinant viral vector vaccines for use in humans.


Assuntos
Contaminação de Medicamentos , Preservação Biológica , Tecnologia Farmacêutica , Vacinas Virais/isolamento & purificação , Cultura de Vírus , Animais , Humanos , Vacinas Atenuadas/isolamento & purificação
4.
Discov Med ; 20(112): 379-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26760982

RESUMO

The majority of chronic diseases in the aging adult are thought to relate to immune aging characterized by dominant immunosuppression and paradoxically, concomitant inflammation. This is known collectively as immunosenescence. The main change thought to be controlling immune aging is the age-related decline in dehydroepiandrosterone (DHEA) and corresponding increase in cortisol; the net effect which decreases the DHEA/cortisol ratio. Exactly how this translates to immunosuppression and concomitant inflammation remains unclear. Recently a new component of the human innate immune system has been discovered. Human endogenous retrovirus K102 (HERV-K102) is a replication-competent foamy retrovirus unique to humans which has been implicated in chronic diseases. Accumulating evidence suggests that HERV-K102 may defend the host against viral infections, as well as against breast and other cancers. Particles are produced in activated monocytes and released into vacuoles but do not bud through the cell surface. This renders macrophages foamy, while the release of particles is only through cell lysis. New evidence presented here suggests DHEA but not DHEA-S may specifically bind and inactivate alpha-fetoprotein (AFP). AFP is a well-established immunosuppressive factor which importantly, also blocks cell lysis induction in macrophages through the 67 kilodalton (kD) AFP receptor (AFPr). Here, it is proposed that a decreased DHEA/cortisol ratio may favor the accumulation of foamy macrophages reflecting the cortisol induction of HERV-K102 particle production concomitant with the blocked release of particles by secreted AFP. This is a new paradigm to explain how cortisol-mediated immunosenescence can result in the persistence of foamy macrophages, and how this relates to risk of chronic disease.


Assuntos
Envelhecimento/patologia , Doença Crônica , Retrovirus Endógenos/metabolismo , Hidrocortisona/metabolismo , Imunossenescência , Vírion/metabolismo , Humanos , Fatores de Risco
5.
Open AIDS J ; 9: 112-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793281

RESUMO

OBJECTIVE: The goals of the research were to determine if a foamy effect on macrophages was due to human endogenous retrovirus K102 (HERV-K102) replication, and to further address its potential significance in HIV-1 infection. METHODS: An RT-PCR HERV-K HML-2 pol method was used to screen the unknown HERV, and isolated bands were sent for sequencing. Confirmation of RNA expression was performed by a real time quantitative PCR (qPCR) pol ddCt method. Rabbit antibodies to Env peptides were used to assess expression by immunohistology and processing of Env by western blots. A qPCR pol ddCt method to ascertain genomic copy number was performed on genomic DNA isolated from plasma comparing HIV-1 exposed seronegative (HESN) commercial sex workers (CSW) to normal controls and contrasted with HIV-1 patients. RESULTS: HERV-K102 expression, particle production and replication were associated with foamy macrophage generation in the cultures of cord blood mononuclear cells under permissive conditions. A five-fold increased HERV-K102 pol genomic copy number was found in the HESN cohort over normal which was not found in HIV-1 positive patients (p=0.0005). CONCLUSIONS: This work extends the evidence that HERV-K102 has foamy virus attributes, is replication competent, and is capable of high replication rate in vivo and in vitro. This may be the first characterization of a replication-competent, foamy-like virus of humans. High particle production inferred by increased integration in the HESN cohort over HIV-1 patients raises the issue of the clinical importance of HERV-K102 particle production as an early protective innate immune response against HIV-1 replication.

6.
AIDS ; 21(18): 2417-24, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18025878

RESUMO

OBJECTIVE: To address the activation and replicative activity of HERV-K102 in vivo associated with HIV viremia. DESIGN AND METHODS: Initially serology was performed on HERV-K102 specific envelope peptides to determine if HERV-K102 may become activated with HIV viremia. Before developing a quantitative PCR (qPCR) assay, we first determined whether plasma associated particles contained DNA or RNA genomes in a pilot study which surprisingly revealed predominantly DNA genomes. A relative, ddCt qPCR ratio method was then devised to detect excess levels of HERV-K102 pol DNA templates over genomic levels which served as a surrogate marker to reliably index the level of particles found in plasma. RESULTS: Both the peptide serology and ddCt qPCR excess ratio methods suggested the activation of HERV-K102 in about 70-80% of HIV viremic cases whereas only 2-3% of normal healthy adults had marginally activated HERV-K102 (P < 0.0001). Moreover, by digestion with dUTPase we were able to confirm that the vast majority of excess DNA template in plasma related to cDNA production rather than representing genomic copies. CONCLUSIONS: Our work uniquely suggests the common activation of HERV-K102 with HIV viremia and may be first to directly demonstrate HERV-K102 cDNA production in vivo. The potential implications of the induction of HERV-K102 activation and replication for the prevention and control of HIV are discussed.


Assuntos
Retrovirus Endógenos/fisiologia , Infecções por HIV/virologia , HIV-1 , Viremia/virologia , Replicação Viral , DNA Complementar/biossíntese , DNA Viral/biossíntese , Retrovirus Endógenos/genética , Genoma Viral , Humanos , Projetos Piloto , Reação em Cadeia da Polimerase/métodos , Moldes Genéticos , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA