Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2307618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308358

RESUMO

This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium. Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.


Assuntos
Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Peptídeos , Polietilenoglicóis , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos/métodos , Administração Oral , Animais , Peptídeos/química , Peptídeos/farmacocinética , Emulsões/química , Ratos , Masculino , Ratos Sprague-Dawley , Tensoativos/química , Glicerol/química , Glicerol/análogos & derivados
2.
Planta Med ; 90(7-08): 588-594, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843798

RESUMO

Antimicrobial photodynamic therapy (aPDT) is an evolving treatment strategy against human pathogenic microbes such as the Candida species, including the emerging pathogen C. auris. Using a modified EUCAST protocol, the light-enhanced antifungal activity of the natural compound parietin was explored. The photoactivity was evaluated against three separate strains of five yeasts, and its molecular mode of action was analysed via several techniques, i.e., cellular uptake, reactive electrophilic species (RES), and singlet oxygen yield. Under experimental conditions (λ = 428 nm, H = 30 J/cm2, PI = 30 min), microbial growth was inhibited by more than 90% at parietin concentrations as low as c = 0.156 mg/L (0.55 µM) for C. tropicalis and Cryptococcus neoformans, c = 0.313 mg/L (1.10 µM) for C. auris, c = 0.625 mg/L (2.20 µM) for C. glabrata, and c = 1.250 mg/L (4.40 µM) for C. albicans. Mode-of-action analysis demonstrated fungicidal activity. Parietin targets the cell membrane and induces cell death via ROS-mediated lipid peroxidation after light irradiation. In summary, parietin exhibits light-enhanced fungicidal activity against all Candida species tested (including C. auris) and Cryptococcus neoformans, covering three of the four critical threats on the WHO's most recent fungal priority list.


Assuntos
Antifúngicos , Cryptococcus neoformans , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/efeitos da radiação , Candida auris/efeitos dos fármacos , Luz , Candida/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Antraquinonas/farmacologia , Fármacos Fotossensibilizantes/farmacologia
3.
Biomacromolecules ; 24(11): 4880-4889, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37796043

RESUMO

This study aims to design an anionic, thiolated cellulose derivative and to evaluate its mucoadhesive and permeation-enhancing properties utilizing enoxaparin as a model drug. 2-Mercaptosuccinic acid-modified cellulose (cellulose-mercaptosuccinate) was synthesized by the reaction of cellulose with S-acetylmercaptosuccinic anhydride. The chemical structure of the target compound was confirmed by FTIR and 1H NMR spectroscopy. The thiol content was determined by Ellman's test. The conjugate exhibited 215.5 ± 25 µmol/g of thiol groups and 84 ± 16 µmol/g of disulfide bonds. Because of thiolation, mucoadhesion on porcine intestinal mucosa was 9.6-fold enhanced. The apparent permeability (Papp) of the model dye Lucifer yellow was up to 2.2-fold improved by 0.5% cellulose-mercaptosuccinate on a Caco-2 cell monolayer. Enoxaparin permeation through rat intestinal mucosa increased 2.4-fold in the presence of 0.5% cellulose-mercaptosuccinate compared with the drug in buffer only. In vivo studies in rats showed an oral bioavailability of 8.98% using cellulose-mercaptosuccinate, which was 12.5-fold higher than that of the aqueous solution of the drug. Results of this study show that the modification of cellulose with 2-mercaptosuccinic acid provides mucoadhesive and permeation-enhancing properties, making this thiolated polymer an attractive excipient for oral drug delivery.


Assuntos
Enoxaparina , Polímeros , Humanos , Ratos , Animais , Suínos , Polímeros/farmacologia , Polímeros/química , Células CACO-2 , Celulose/química , Sistemas de Liberação de Medicamentos/métodos , Compostos de Sulfidrila/química , Preparações Farmacêuticas , Mucosa Intestinal
4.
Drug Dev Ind Pharm ; 48(4): 129-139, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35822253

RESUMO

Target-site drug delivery systems are gaining interest in the pharmaceutical field due to their great advantages, such as higher drug dosing capacity and better bioavailability. However, some existing problems need to be overcome. An example, is the interaction between blood proteins and drug delivery systems. A potent candidate to approach the mentioned problem is based on polyethylene glycol (PEG) surface modifications. This polymer acts as a protector against the external possible interactions with other compounds, making targeted delivery possible. Diseases such as cancer, diabetes, hemophilia and pain treatment can benefit from these new systems. This review aims to give an overview of drug delivery systems based on PEGylation as surface modification as the pharmaceutical approach. Moreover, a deeper insight into the properties of PEG and its advantages is given, as well as a brief overview of present therapies based on this technology.


Assuntos
Sistemas de Liberação de Medicamentos , Polietilenoglicóis , Preparações Farmacêuticas
5.
Mol Pharm ; 15(8): 3527-3534, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30047266

RESUMO

The aim of this study was to synthesize iodine containing polymeric excipients for mucosal treatment of microbial infection exhibiting a prolonged mucosal residence time by forming an adhesive gel on the mucosal surface. In order to achieve this aim, 2-(2 acryloylamino-ethyldisulfanyl)-nicotinic acid (ACENA) was copolymerized with N-vinylpyrrolidone (NVP) to obtain thiolated polyvinylpyrrolidone (PVP) for complexation with iodine. The average molecular mass of different thiolated PVP variants was determined by size exclusion chromatography. The structure of thiolated PVP was confirmed by 1H NMR. Thiolated PVP variants were characterized for thiol content, cytotoxicity, iodine loading capacity, rheological behavior, and adhesion time on mucosa. The highest achieved degree of thiolation was 610 ± 43 µmol/g, and the maximum recorded iodine loading was 949 ± 31 µmol/g of polymer. Thiolated PVP variants (0.5% m/v) showed no toxicity after incubation on Caco-2 cells for the period of 3 and 24 h, respectively. Thiolated PVP and thiolated PVP-iodine complexes exhibited a 5.4- and 4.4-fold increased dynamic viscosity in porcine mucus in comparison to PVP and PVP-iodine complex, respectively. Compared to PVP and PVP-iodine complex thiol-functionalized PVP and PVP-iodine complexes demonstrated significantly prolonged attachment to mucosal surface over a period of 3 h. Thiol functionalized PVP proved to be a promising novel excipient for complexation with iodine and to exhibit strongly improved mucoadhesive properties.


Assuntos
Adesivos/farmacologia , Anti-Infecciosos Locais/farmacologia , Excipientes/farmacologia , Povidona-Iodo/farmacologia , Compostos de Sulfidrila/farmacologia , Adesivos/síntese química , Animais , Anti-Infecciosos Locais/síntese química , Células CACO-2 , Composição de Medicamentos/métodos , Excipientes/síntese química , Glicoproteínas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Povidona-Iodo/síntese química , Compostos de Sulfidrila/síntese química , Suínos
6.
Drug Dev Ind Pharm ; 43(11): 1866-1872, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28673094

RESUMO

This study aimed to screen the stability, disintegration, and swelling behavior of chemically modified anionic polymers. Investigated polymers were well-known and widely used staples of the pharmaceutical and medical field, namely, alginate (AL), carboxymethyl cellulose (CMC), polycarbophil (PC), and hyaluronic acid (HA). On the basis of amide bond formation between the carboxylic acid moieties of anionic polymers and the primary amino group of the modification ligand cysteine (CYS), the modified polymers were obtained. Unmodified polymers served as controls throughout all studies. With the Ellman's assay, modification degrees were determined of synthesized polymeric excipients. Stability assay in terms of erosion study at physiological conditions were performed. Moreover, water uptake of compressed polymeric discs were evaluated and further disintegration studies according to the USP were carried out to define the potential ranking. Results ranking figured out PCCYS > CMCCYS > HACYS > ALCYS in terms of water uptake capacity compared to respective controls. Cell viability assays on Caco-2 cell line as well as on RPMI 2650 (ATTC CCL30) proved modification not being harmful to those. Due to the results of this study, an intense screening of prominent anionic polymer derivate was performed in order to help the pharmaceutical research for the best choice of polymeric excipients for developments of controlled drug release systems.


Assuntos
Resinas Acrílicas/química , Alginatos/química , Ânions/química , Células CACO-2/química , Carboximetilcelulose Sódica/química , Cisteína/química , Excipientes/química , Ácido Hialurônico/química , Polímeros/química , Resinas Acrílicas/metabolismo , Alginatos/metabolismo , Carboximetilcelulose Sódica/metabolismo , Cisteína/metabolismo , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Humanos
7.
AAPS PharmSciTech ; 18(6): 2102-2109, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28028792

RESUMO

This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.


Assuntos
Curcumina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Excipientes/farmacocinética , Mucosa Bucal/metabolismo , Animais , Células CACO-2 , Curcumina/administração & dosagem , Curcumina/química , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/administração & dosagem , Excipientes/química , Humanos , Mucosa Bucal/efeitos dos fármacos , Suínos
8.
Drug Dev Ind Pharm ; 42(4): 668-675, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26258802

RESUMO

The aim of this study was to synthesize the preactivated thiomer poly(acrylic acid)-cyteine-2-mercaptonicotinic acid (PAA-Cys-2MNA) and to evaluate its P-glycoprotein (P-gp) inhibitory properties. The thiomer (PAA-Cys) was synthesized by covalent immobilization of thiol groups on poly(acrylic acid) (PAA) with a molecular mass of 250 kDa followed by immobilization of 2-mercaptonicotinic acid (2MNA) to thiol groups via disulfide bond formation resulting in PAA-Cys-2MNA. P-gp inhibitory effect of this preactivated thiomer was evaluated on Caco-2 cells. Transports of rhodamine 123 at 37 °C with and without verapamil and at 4 °C were performed to evaluate P-gp function of cells. In total, 1571.81 ± 156.18 µmol thiol groups were immobilized per gram of polymer that were in the next step by 99.88% preactivated. The enhancement ratios of Papp calculated from the ratio between Papp of rhodamine 123 in the presence of P-gp inhibitors and Papp of rhodamine 123 alone were 2.36, 2.09, and 1.84-fold in the presence of PAA-Cys-2MNA, PAA-Cys, and PAA, respectively. Because of its pronounced P-gp inhibitory effect, PAA-Cys-2MNA could be considered as promising macromolecular P-gp inhibitor for various drug delivery systems.


Assuntos
Resinas Acrílicas/síntese química , Resinas Acrílicas/farmacologia , Ácidos Nicotínicos/síntese química , Ácidos Nicotínicos/farmacologia , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Células CACO-2 , Sistemas de Liberação de Medicamentos/métodos , Humanos , Rodamina 123/farmacologia , Verapamil/farmacologia
9.
Drug Dev Ind Pharm ; 42(4): 668-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26288998

RESUMO

The aim of this study was to synthesize the preactivated thiomer poly(acrylic acid)-cyteine-2-mercaptonicotinic acid (PAA-Cys-2MNA) and to evaluate its P-glycoprotein (P-gp) inhibitory properties. The thiomer (PAA-Cys) was synthesized by covalent immobilization of thiol groups on poly(acrylic acid) (PAA) with a molecular mass of 250 kDa followed by immobilization of 2-mercaptonicotinic acid (2MNA) to thiol groups via disulfide bond formation resulting in PAA-Cys-2MNA. P-gp inhibitory effect of this preactivated thiomer was evaluated on Caco-2 cells. Transports of rhodamine 123 at 37 °C with and without verapamil and at 4 °C were performed to evaluate P-gp function of cells. In total, 1571.81 ± 156.18 µmol thiol groups were immobilized per gram of polymer that were in the next step by 99.88% preactivated. The enhancement ratios of Papp calculated from the ratio between Papp of rhodamine 123 in the presence of P-gp inhibitors and Papp of rhodamine 123 alone were 2.36, 2.09, and 1.84-fold in the presence of PAA-Cys-2MNA, PAA-Cys, and PAA, respectively. Because of its pronounced P-gp inhibitory effect, PAA-Cys-2MNA could be considered as promising macromolecular P-gp inhibitor for various drug delivery systems.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Resinas Acrílicas/síntese química , Resinas Acrílicas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Rodamina 123/síntese química , Rodamina 123/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Células CACO-2 , Sobrevivência Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos
10.
Drug Dev Ind Pharm ; 42(5): 730-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019194

RESUMO

The present study focused on the assembly of an insulin exhibiting, nanoparticulate formulation and the characterization thereof regarding particle size, zeta potential and stability of nanoparticles as well as mucoadhesion indicating, turbidity measurements and drug release studies after particle purification. The preparation was performed in the presence of insulin due to the formation of hydrogen bonds between poly(vinyl pyrrolidone) (PVP) and poly(acrylic acid) (PAA) or its conjugate poly(acrylic acid)-cysteine (PAA-Cys) with a molecular mass of 100 as well as 450 kDa. Stable suspensions, displaying nanoparticles with a mean particle size in the range of 200 nm as well as a negative zeta potential, were achieved with 100 kDa poly(acrylic acid) (PAA100) or poly(acrylic acid)-cysteine (PAA100-Cys). Turbidity measurements displayed a pH dependent interaction of nanoparticulate material and mucin leading to a greater and earlier interference at pH 3.9 compared to pH 7.4. Moreover a 1.2-fold increase of the absorbance of nanoparticle-mucin dispersions compared to mucin control was observed after 3 h. The introduced particulate drug delivery system might in conclusion display a sophisticated vehicle for the non-invasive delivery of insulin and other peptide drugs.


Assuntos
Nanopartículas/química , Compostos de Sulfidrila/química , Resinas Acrílicas/química , Química Farmacêutica/métodos , Cisteína/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Insulina/química , Peso Molecular , Tamanho da Partícula , Polivinil/química , Pirrolidinas/química
11.
Drug Dev Ind Pharm ; 42(7): 1118-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26552713

RESUMO

Interactions between active pharmaceutical ingredients (APIs) and polyvalent cations are an important factor within drug absorption in the gastrointestinal tract. Dolutegravir sodium, as a second-generation integrase stand transfer inhibitor for the treatment of HIV was investigated regarding chelation with Al(3+), Ca(2+), Fe(3+), Mg(2+ )and Zn(2+) ions at three different molar ratios. Furthermore, the influence of drug-ion chelates on the permeability of the drug across two intestinal membrane models was analyzed. For this purpose, Caco-2 monolayer model and Ussing chamber technique utilizing freshly excited rat intestinal mucosa were chosen and a buffer system without additional Mg(2+) and Ca(2+) ions was tested regarding cell detachment. The addition of polyvalent cations in an equal molar ratio to the drug solution decreased the dissolved drug by at least 11%. An increased multivalent cation concentration in a ratio of 1:10 afforded an API drop in the solution of at least 88% with the exception of Mg(2+). In particular, Dolutegravir sodium was chelated with iron ions to nearly 100%. Overall, the higher the amount of metal ions in the solution, the lower was the detected amount of the drug. The permeation experiments across the Caco-2 monolayer and the rat intestinal mucosa pointed out that the addition of AlCl3, CaCl2 and ZnCl2 in a molar ratio of 10:1 to the drug led to significantly decreased drug permeation. According to these results the co-administration of Al(3+), Ca(2+ )or Zn(2+ )as well as of supplementary medications containing these polyvalent ions is in case of oral Dolutegravir delivery not recommended.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Inibidores de Integrase de HIV/farmacocinética , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Metais/farmacologia , Administração Oral , Animais , Células CACO-2 , Cátions , Complexos de Coordenação/análise , Suplementos Nutricionais , Interações Medicamentosas , Inibidores de Integrase de HIV/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Humanos , Mucosa Intestinal/metabolismo , Masculino , Metais/administração & dosagem , Metais/química , Oxazinas , Permeabilidade , Piperazinas , Piridonas , Ratos , Ratos Sprague-Dawley
12.
Drug Dev Ind Pharm ; 42(5): 686-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26133081

RESUMO

The objective was to investigate whether even low-molecular weight polymers (LMWPs) can be rendered mucoadhesive due to thiolation. Interceded by the double catalytic system carbodiimide/N-hydroxysuccinimide, cysteamine was covalently attached to a copolymer, poly(4-styrenesulfonic acid-co-maleic acid) (PSSA-MA) exhibiting a molecular weight of just 20 kDa. Depending on the amount of added N-hydroxysuccinimide and cysteamine, the resulting PSSA-MA-cysteamine (PC) conjugates exhibited increasing degree of thiolation, highest being "PC 2300" exhibiting 2300.16 ± 149.86 µmol thiol groups per gram of polymer (mean ± SD; n = 3). This newly developed thiolated polymer was evaluated regarding mucoadhesive, rheological and drug release properties as well from the toxicological point of view. Swelling behavior in 100 mM phosphate buffer pH 6.8 was improved up to 180-fold. Furthermore, due to thiolation, the mucoadhesive properties of the polymer were 240-fold improved. Rheological measurements of polymer/mucus mixtures confirmed results obtained by mucoadhesion studies. In comparison to unmodified polymer, PC 2300 showed 2.3-, 2.3- and 2.4-fold increase in dynamic viscosity, elastic modulus and viscous modulus, respectively. Sustained release of the model drug codeine HCl out of the thiomer was provided for 2.5 h (p < 0.05), whereas the drug was immediately released from the unmodified polymer. Moreover, the thiomer was found non-toxic over Caco-2 cells for a period of 6- and 24-h exposure. Findings of the present study provide evidence that due to thiolation LMWPs can be rendered highly mucoadhesive as well as cohesive and that a controlled drug release out of such polymers can be provided.


Assuntos
Adesivos/química , Polímeros/química , Compostos de Sulfidrila/química , Animais , Células CACO-2 , Carbodi-Imidas/química , Linhagem Celular Tumoral , Cisteamina/química , Sistemas de Liberação de Medicamentos , Humanos , Mucosa Intestinal/metabolismo , Maleatos/química , Peso Molecular , Poliestirenos/química , Reologia , Succinimidas/química , Suínos , Viscosidade
13.
Drug Dev Ind Pharm ; 40(5): 591-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24576266

RESUMO

Raising the concept of mucoadhesion in the 1980s, the use of mucoadhesive polymers for buccal drug delivery has been the subject of interest. Buccal route is one of the non-invasive routes comprising several advantages such as targeting the specific tissue (I), bypassing the first-pass effect (II) as well as higher patient compliance (III) and higher bioavailability (IV) have rendered administration route feasible for a variety of drugs. This review highlights the use of mucoadhesive polymers in buccal drug delivery. An overview of the oral mucosa's anatomy, theories of mucoadhesion as well as mucoadhesive polymers is given within this review. Furthermore, recent advantages in mucoadhesive polymers according to the variety of drug delivery forms are presented.


Assuntos
Administração Bucal , Adesivos/administração & dosagem , Adesivos/química , Animais , Disponibilidade Biológica , Formas de Dosagem , Sistemas de Liberação de Medicamentos , Humanos , Mucosa Bucal/anatomia & histologia , Mucosa Bucal/metabolismo , Absorção pela Mucosa Oral , Peptídeos/administração & dosagem , Polímeros/administração & dosagem , Polímeros/química , Proteínas/administração & dosagem
14.
Int J Biol Macromol ; 254(Pt 3): 127939, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951441

RESUMO

The aim was to design and evaluate a chitosan-based conjugate providing high mucoadhesiveness and antibacterial activity for ocular infections treatment. Chitosan was conjugated with maleic acid via amide bond formation and infrared spectroscopy. Furthermore, 2,4,6-Trinitrobenzene sulfonic acid (TNBS) allowed characterization and quantification of conjugated groups, respectively. Biocompatibility was tested via hemolysis assay and Hen's Egg-Chorioallantoic membrane test. Characterization of the pH and osmolarity of hydrogels was followed by mucoadhesion assessment utilizing rheology. In addition, antibacterial studies were carried out towards Escherichia coli by broth microdilution test and agar-disk diffusion assay. In vivo studies were carried out following the already established Draize test and determining pharmacokinetic profile of dexamethasone in aqueous humour. The conjugate exhibited a degree of modification of 50.05 % and no toxicity or irritability. Moreover, mucoadhesive properties were enhanced in 2.68-fold and 1.81-fold for elastic and viscous modulus, respectively. Furthermore, rheological synergism revealed the presence of a gel-like structure. Additionally, broth microdilution and agar disk diffusion studies exhibited enhancement in antibacterial activity. Finally, in vivo studies manifested that hydrogels were highly tolerated, evidencing promising characteristics of the developed conjugate. The conjugate presented promising antimicrobial, long lasting mucoadhesive features and highly improved pharmacokinetics, leading to a revolutionizing approach in the treatment of ocular bacterial infections.


Assuntos
Quitosana , Hidrogéis , Animais , Feminino , Hidrogéis/farmacologia , Hidrogéis/química , Quitosana/farmacologia , Quitosana/química , Ágar , Galinhas , Antibacterianos/farmacologia , Antibacterianos/química
15.
Carbohydr Polym ; 327: 121648, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171673

RESUMO

Overcoming P-glycoprotein (P-gp)-mediated efflux poses a significant challenge for the pharmaceutical industry. This study investigates the potential of thiolated ß-cyclodextrins (ß-CD-SHs) as inhibitors of P-gp-mediated efflux in Caco-2 cells. Through a series of transport assays, intracellular accumulation, and efflux of the P-gp substrates Rhodamine 123 (Rh123) and Calcein-AM with and without co-administration of ß-CD-SHs were assessed. The results revealed that the cellular uptake of Rh123 and Calcein-AM were enhanced up to 7- and 3-fold, compared to the control, respectively. In efflux studies an up to 2.5-fold reduction of the Rh123 efflux was reached compared the control, indicating a substantial decrease of Rh123 efflux by ß-CD-SHs. Furthermore, it was observed that ß-CD-SHs led to a decrease in the reactivity of fluorescence-labeled anti-P-gp, suggesting additional effects on the conformation of P-gp. Overall, this study demonstrates the potential of ß-CD-SHs as effective modulator of P-gp-mediated drug efflux in Caco-2 cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Ciclodextrinas , Humanos , Células CACO-2 , Ciclodextrinas/farmacologia , Rodamina 123
16.
Eur J Pharm Sci ; 196: 106761, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580169

RESUMO

Inspired by nature, tissue engineering aims to employ intricate mechanisms for advanced clinical interventions, unlocking inherent biological potential and propelling medical breakthroughs. Therefore, medical, and pharmaceutical fields are growing interest in tissue and organ replacement, repair, and regeneration by this technology. Three primary mechanisms are currently used in tissue engineering: transplantation of cells (I), injection of growth factors (II) and cellular seeding in scaffolds (III). However, to develop scaffolds presenting highest potential, reinforcement with polymeric materials is growing interest. For instance, natural and synthetic polymers can be used. Regardless, chitosan and keratin are two biopolymers presenting great biocompatibility, biodegradability and non-antigenic properties for tissue engineering purposes offering restoration and revitalization. Therefore, combination of chitosan and keratin has been studied and results exhibit highly porous scaffolds providing optimal environment for tissue cultivation. This review aims to give an historical as well as current overview of tissue engineering, presenting mechanisms used and polymers involved in the field.

17.
Drug Dev Ind Pharm ; 39(10): 1531-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23057506

RESUMO

The objective of this study was to evaluate the biodegradability of thiolated chitosans in comparison to unmodified chitosan. Mediated by carbodiimide, thioglycolic acid (TGA) and mercaptonicotinic acid (MNA) were covalently attached to chitosan via formation an amide bond. Applying two different concentrations of carbodiimide 50 and 100 mM, two chitosan TGA conjugates (TGA A and TGA B) were obtained. According to chitosan solution (3% m/v) thiomer solutions were prepared and chitosanolytic enzyme solutions were added. Lysozyme, pectinase and cellulase were examined in chitosan degrading activity. The enzymatic degradability of these thiomers was investigated by viscosity measurements with a plate-plate viscometer. The obtained chitosan TGA conjugate A displayed 267.7 µmol and conjugate B displayed 116.3 µmol of immobilized thiol groups. With 325.4 µmol immobilized thiol groups, chitosan MNA conjugate displayed the most content of thiol groups. In rheological studies subsequently the modification proved that chitosan TGA conjugates with a higher coupling rate of thiol groups were not only degraded to a lesser extent by 20.9-26.4% but also more slowly. Chitosan mercaptonicotinic acid was degraded by 31.4-50.1% depending the investigated enzyme and even faster than unmodified chitosan. According to these results the biodegradability can be influenced by various modifications of the polymer which showed in particular that the rate of biodegradation is increased when MNA is the ligand, whereas the degradation is hampered when TGA is used as ligand for chitosan.


Assuntos
Proteínas Aviárias/metabolismo , Celulase/metabolismo , Quitosana/análogos & derivados , Proteínas Fúngicas/metabolismo , Muramidase/metabolismo , Poligalacturonase/metabolismo , Animais , Aspergillus/enzimologia , Biotransformação , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Quitosana/efeitos adversos , Quitosana/química , Quitosana/metabolismo , Portadores de Fármacos , Proteínas do Ovo/metabolismo , Enterócitos/efeitos dos fármacos , Etildimetilaminopropil Carbodi-Imida/química , Humanos , Indicadores e Reagentes/química , Cinética , Ácidos Nicotínicos/química , Compostos de Sulfidrila/química , Tioglicolatos/química , Trichoderma/enzimologia
18.
Drug Dev Ind Pharm ; 39(9): 1338-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22901004

RESUMO

Within this study, the influence of particle size and zeta potential of hydroxyethyl cellulose-cysteamine particles on permeation enhancing properties was investigated. Particles were prepared by four different methods namely ionic gelation, spray drying, air jet milling and grinding. Particles prepared by grinding were additionally air jet milled. All particles were characterized in terms of particle size and zeta potential. The transport of fluorescein isothiocyanate-dextran 4 (FD4) across Caco-2 cell monolayers in the presence of these particles and the decrease in transepithelial electrical resistance (TEER) was evaluated. The cytotoxic effect of the particles was investigated using resazurin assay. Nanoparticles displaying a zeta potential of 3.3 ± 1.3 mV showed the highest enhancement of FD4 transport among all particles with a 5.83-fold improvement compared to buffer only. Due to the larger particle size, particles generated by grinding exhibited a lower capability in opening of tight junctions compared to smaller particles generated by air jet milling. In addition, the results of the transport studies were supported by the decrease in the TEER. All particle formulations tested were comparatively non-cytotoxic. Accordingly, the zeta potential and particle size showed a significant impact on the opening of tight junctions and hence could play an important role in the design of hydroxyethyl cellulose (HEC)-cysteamine-based nano- and micro-particles as drug delivery systems.


Assuntos
Celulose/análogos & derivados , Cisteamina/química , Enterócitos/metabolismo , Excipientes/química , Corantes Fluorescentes/metabolismo , Compostos de Sulfidrila/química , Junções Íntimas/metabolismo , Transporte Biológico , Células CACO-2 , Celulose/efeitos adversos , Celulose/química , Celulose/ultraestrutura , Fenômenos Químicos , Cisteamina/efeitos adversos , Dextranos/metabolismo , Impedância Elétrica , Excipientes/efeitos adversos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Absorção Intestinal , Microesferas , Modelos Químicos , Nanopartículas/efeitos adversos , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Permeabilidade , Compostos de Sulfidrila/efeitos adversos , Propriedades de Superfície , Regulação para Cima
19.
Expert Opin Drug Deliv ; 20(11): 1595-1607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044874

RESUMO

INTRODUCTION: The most popular method for delivering drugs locally and systemically is oral. However, the gastrointestinal tract's severe physiological (mucosal and enzymatic barrier) and physicochemical (pH) environment places restrictions on the oral drug delivery system's bioavailability and targeted design. AREAS COVERED: Various nanoparticulate drug delivery systems (NPDDSs) based on lipids or polymers, such as liposomes, solid lipid nanoparticles, polymeric micelles, nanospheres, and nanocapsules and their application in successful treatment of serious diseases such as intestinal bowel disease and colorectal cancer (CRC). These systems can ensure advantages over conventional systems liked improved bioavailability, prolonged residence time, and enhanced solubility of poorly soluble drugs. Moreover, the nature of these NPDDSs led to numerous breakthroughs in bioavailability, active and passive targeting, controlled release, and cost-efficient production on an industrial scale in recent years. EXPERT OPINION: An expert opinion on orally administrable lipid and polymer based NPDDS, the physiological barriers and their use in the treatment of intestinal bowel disease and CRC is provided within this review.


Assuntos
Neoplasias Colorretais , Nanocápsulas , Nanopartículas , Nanosferas , Humanos , Sistemas de Liberação de Medicamentos , Micelas , Disponibilidade Biológica , Polímeros , Administração Oral , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos
20.
Int J Pharm ; 631: 122496, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36529356

RESUMO

Epidemiological research has found that between 5 and 12 percent of the population suffers from chronic rhinosinusitis. Patients are dealing with local side effects such as nasal dryness, sporadic sneezing, and nasal pain in addition to the inflammation. The aim of this study was to synthesize a polymer based on hyaluronic acid in order to provide lubrication combined with a ligand leading to a covalent binding on the nasal mucosa. Hyaluronic acid (HA) was modified with L-cysteine ethyl ester hydrochloride (CYS) via amid bond formation. Ellman's assay, together with spectroscopic techniques like IR and 1H NMR, confirmed that HACys had been successfully synthesized. It was demonstrated that HACys is safe for administration on the nasal mucosa. The mucoadhesive potential was determined by 3.26-fold with the rotating cylinder assay and 1.4-fold in terms of bioadhesive examination, respectively. Further, the stability of the modified polymer was improved by 7.6-fold compared to the unmodified polymer. Spraying the formulation on the nasal mucosa, the residence time of a model drug was 1.74-fold prolonged at the site of action compared to unmodified polymer. In light of these findings, modified hyaluronic acid (HACys) displayed compelling properties such as lubricity, targeted application, long-lasting effect, and safety and therefore could be an excellent candidate for nasal application.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Humanos , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/química , Polímeros/química , Células CACO-2 , Mucosa Nasal , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA