Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629453

RESUMO

MOTIVATION: Nowadays, epigenetic gene regulations are studied in each part of the biology, from embryonic development to diseases such as cancers and neurodegenerative disorders. Currently, to quantify and compare CpG methylation levels of a specific region of interest, the most accessible technique is the bisulfite sequencing PCR (BSP). However, no existing user-friendly tool is able to analyze data from all approaches of BSP. Therefore, the most convenient way to process results from the direct sequencing of PCR products (direct-BSP) is to manually analyze the chromatogram traces, which is a repetitive and prone to error task. RESULTS: Here, we implement a new R-based tool, called ABSP for analysis of bisulfite sequencing PCR, providing a complete analytic process of both direct-BSP and cloning-BSP data. It uses the raw sequencing trace files (.ab1) as input to compute and compare CpG methylation percentages. It is fully automated and includes a user-friendly interface as a built-in R shiny app, quality control steps and generates publication-ready graphics. AVAILABILITY AND IMPLEMENTATION: The ABSP tool and associated data are available on GitHub at https://github.com/ABSP-methylation-tool/ABSP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Sulfitos , Análise de Sequência de DNA/métodos , Reação em Cadeia da Polimerase/métodos , Software
2.
Biol Cell ; 114(1): 32-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34561874

RESUMO

BACKGROUND INFORMATION: Although improvements have been made in the management of pancreatic adenocarcinoma (PDAC) during the past 20 years, the prognosis of this deadly disease remains poor with an overall 5-year survival under 10%. Treatment with FOLFIRINOX, a combined regimen of 5-fluorouracil, irinotecan (SN-38) and oxaliplatin, is nonetheless associated with an excellent initial tumour response and its use has allowed numerous patients to go through surgery while their tumour was initially considered unresectable. These discrepancies between initial tumour response and very low long-term survival are the consequences of rapidly acquired chemoresistance and represent a major therapeutic frontier. To our knowledge, a model of resistance to the combined three drugs has never been described due to the difficulty of modelling the FOLFIRINOX protocol both in vitro and in vivo. Patient-derived tumour organoids (PDO) are the missing link that has long been lacking in the wide range of epithelial cancer models between 2D adherent cultures and in vivo xenografts. In this work we sought to set up a model of PDO with resistance to FOLFIRINOX regimen that we could compare to the paired naive PDO. RESULTS: We first extrapolated physiological concentrations of the three drugs using previous pharmacodynamics studies and bi-compartmental elimination models of oxaliplatin and SN-38. We then treated PaTa-1818x naive PDAC organoids with six cycles of 72 h-FOLFIRINOX treatment followed by 96 h interruption. Thereafter, we systematically compared treated organoids to PaTa-1818x naive organoids in terms of growth, proliferation, viability and expression of genes involved in cancer stemness and aggressiveness. CONCLUSIONS: We reproductively obtained resistant organoids FoxR that significantly showed less sensitivity to FOLFORINOX treatment than the PaTa-1818x naive organoids from which they were derived. Our resistant model is representative of the sequential steps of chemoresistance observed in patients in terms of growth arrest (proliferation blockade), residual disease (cell quiescence/dormancy) and relapse. SIGNIFICANCE: To our knowledge, this is the first genuine in vitro model of resistance to the three drugs in combined therapy. This new PDO model will be a great asset for the discovery of acquired chemoresistance mechanisms, knowledge that is mandatory before offering new therapeutic strategies for pancreatic cancer.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Humanos , Irinotecano/uso terapêutico , Leucovorina , Organoides , Oxaliplatina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico
3.
Anal Chem ; 93(43): 14383-14391, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34670081

RESUMO

Mass spectrometry imaging (MSI) has shown to bring invaluable information for biological and clinical applications. However, conventional MSI is generally performed ex vivo from tissue sections. Here, we developed a novel MS-based method for in vivo mass spectrometry imaging. By coupling the SpiderMass technology, that provides in vivo minimally invasive analysis-to a robotic arm of high accuracy, we demonstrate that images can be acquired from any surface by moving the laser probe above the surface. By equipping the robotic arm with a sensor, we are also able to both get the topography image of the sample surface and the molecular distribution, and then and plot back the molecular data, directly to the 3D topographical image without the need for image fusion. This is shown for the first time with the 3D topographic MS-based whole-body imaging of a mouse. Enabling fast in vivo MSI bridged to topography paves the way for surgical applications to excision margins.


Assuntos
Robótica , Animais , Imageamento Tridimensional , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Proteomics ; 19(21-22): e1800454, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430054

RESUMO

Many solid cancers are hierarchically organized with a small number of cancer stem cells (CSCs) able to regrow a tumor, while their progeny lacks this feature. Breast CSC is known to contribute to therapy resistance. The study of those cells is usually based on their cell-surface markers like CD44high /CD24low/neg or their aldehyde dehydrogenase (ALDH) activity. However, these markers cannot be used to track the dynamics of CSC. Here, a transcriptomic analysis is performed to identify segregating gene expression in CSCs and non-CSCs, sorted by Aldefluor assay. It is observed that among ALDH-associated genes, only ALDH1A1 isoform is increased in CSCs. A CSC reporter system is then developed by using a far red-fluorescent protein (mNeptune) under the control of ALDH1A1 promoter. mNeptune-positive cells exhibit higher sphere-forming capacity, tumor formation, and increased resistance to anticancer therapies. These results indicate that the reporter identifies cells with stemness characteristics. Moreover, live tracking of cells in a microfluidic system reveals a higher extravasation potential of CSCs. Live tracking of non-CSCs under irradiation treatment show, for the first time, live reprogramming of non-CSCs into CSCs. Therefore, the reporter will allow for cell tracking to better understand the implication of CSCs in breast cancer development and recurrence.


Assuntos
Família Aldeído Desidrogenase 1/genética , Neoplasias da Mama/genética , Rastreamento de Células , Perfilação da Expressão Gênica , Genes Reporter , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes
5.
Vet Pathol ; 56(3): 377-388, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30558511

RESUMO

CD44+/CD24- phenotype has been used to identify human and canine mammary cancer stem-like cells. In canine mammary tumors, CD44+/CD24- phenotype has been associated with high grade and lymph node infiltration. However, several studies have reported opposing results regarding the clinical significance of phenotypic groups formed by the combination of CD44 and CD24 in both human and canine mammary tumors. So far, no study has investigated the correlation between these phenotypes and survival in dogs. The aim of this study was to investigate the expression and distribution of CD44 and CD24 in canine mammary carcinomas and to correlate them with histological diagnosis and survival in a well-characterized cohort. Immunohistochemistry was performed in 96 mammary carcinomas with antibodies against CD44 and CD24. Expression of CD44+ and CD44+/CD24- phenotype was detected in 75 of 96 (78%) and 63 of 96 (65.6%) carcinomas, respectively. Their expression was associated with tumor type, occurring more often in tubular complex carcinomas than in solid carcinomas. CD44+/CD24- phenotype was associated with a better overall survival ( P = .001). CD24+ expression was detected in 52 of 96 tumors (54%) and CD44-/CD24+ phenotype in 39 of 96 tumors (40.6%). Both were associated with poor clinicopathological parameters (high grade, and emboli). No correlation with overall survival was observed. CD44+/CD24- expression was associated with a better prognosis and occurred at high frequency and high level, indicating that this phenotype is not suitable to detect cancer stem cells in canine mammary carcinomas. Although further studies are needed, our results suggest that CD24 may constitute a valuable marker of poor prognosis for canine mammary carcinomas.


Assuntos
Antígeno CD24/metabolismo , Doenças do Cão/diagnóstico , Receptores de Hialuronatos/metabolismo , Neoplasias Mamárias Animais/diagnóstico , Animais , Doenças do Cão/metabolismo , Doenças do Cão/mortalidade , Doenças do Cão/patologia , Cães , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/mortalidade , Neoplasias Mamárias Animais/patologia , Prognóstico
6.
Cell Mol Life Sci ; 73(9): 1859-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26883804

RESUMO

Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Células-Tronco Neoplásicas/citologia , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais
7.
Stem Cells ; 33(2): 342-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25286822

RESUMO

The discovery of cancer stem cells (CSCs) fundamentally advanced our understanding of the mechanisms governing breast cancer development. However, the stimuli that control breast CSC self-renewal and differentiation have still not been fully detailed. We previously showed that nerve growth factor (NGF) and its precursor proNGF can stimulate breast cancer cell growth and invasion in an autocrine manner. In this study, we investigated the effects of NGF and proNGF on the breast CSC compartment and found that NGF or proNGF enrich for CSCs in several breast cancer cell lines. This enrichment appeared to be achieved by increasing the number of symmetric divisions of quiescent/slow-proliferating CSCs. Interestingly, in vitro NGF pretreatment of MCF-7 luminal breast cancer cells promoted epithelial to mesenchymal transition in tumors of severe combined immunodeficient mice. Furthermore, p75(NTR), the common receptor for both neurotrophins and proneurotrophins, mediated breast CSC self-renewal by regulating the expression of pluripotency transcription factors. Our data indicate, for the first time, that the NGF/proNGF/p75(NTR) axis plays a critical role in regulating breast CSC self-renewal and plasticity.


Assuntos
Comunicação Autócrina , Neoplasias da Mama/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator de Crescimento Neural/metabolismo , Precursores de Proteínas/metabolismo , Nicho de Células-Tronco , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Camundongos SCID , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
8.
Stem Cells ; 32(1): 135-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24022895

RESUMO

Cancer stem cells (CSCs) or tumor-initiating cells, similar to normal tissue stem cells, rely on developmental pathways, such as the Notch pathway, to maintain their stem cell state. One of the regulators of the Notch pathway is Musashi-1, a mRNA-binding protein. Musashi-1 promotes Notch signaling by binding to the mRNA of Numb, the negative regulator of Notch signaling, thus preventing its translation. CSCs have also been shown to downregulate their 26S proteasome activity in several types of solid tumors, thus making them resistant to proteasome-inhibitors used as anticancer agents in the clinic. Interestingly, the Notch pathway can be inhibited by proteasomal degradation of the Notch intracellular domain (Notch-ICD); therefore, downregulation of the 26S proteasome activity can lead to stabilization of Notch-ICD. Here, we present evidence that the downregulation of the 26S proteasome in CSCs constitutes another level of control by which Musashi-1 promotes signaling through the Notch pathway and maintenance of the stem cell phenotype of this subpopulation of cancer cells. We demonstrate that Musashi-1 mediates the downregulation of the 26S proteasome by binding to the mRNA of NF-YA, the transcriptional factor regulating 26S proteasome subunit expression, thus providing an additional route by which the degradation of Notch-ICD is prevented, and Notch signaling is sustained.


Assuntos
Neoplasias da Mama/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Complexo de Endopeptidases do Proteassoma/biossíntese , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Complexo de Endopeptidases do Proteassoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Transfecção
9.
Cell Mol Life Sci ; 71(13): 2467-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24481864

RESUMO

p75(NTR), the common receptor for both neurotrophins and proneurotrophins, has been widely studied because of its role in many tissues, including the nervous system. More recently, a close relationship between p75(NTR) expression and pluripotency has been described. p75(NTR) was shown to be expressed in various types of stem cells and has been used to prospectively isolate stem cells with different degrees of potency. Here, we give an overview of the current knowledge on p75(NTR) in stem cells, ranging from embryonic to adult stem cells, and cancer stem cells. In an attempt to address its potential role in the control of stem cell biology, the molecular mechanisms underlying p75(NTR) signaling in different models are also highlighted. p75(NTR)-mediated functions include survival, apoptosis, migration, and differentiation, and depend on cell type, (pro)neurotrophin binding, interacting transmembrane co-receptors expression, intracellular adaptor molecule availability, and post-translational modifications, such as regulated proteolytic processing. It is therefore conceivable that p75(NTR) can modulate cell-fate decisions through its highly ramified signaling pathways. Thus, elucidating the potential implications of p75(NTR) activity as well as the underlying molecular mechanisms of p75(NTR) will shed new light on the biology of both normal and cancer stem cells.


Assuntos
Marcadores Genéticos , Proteínas do Tecido Nervoso/genética , Células-Tronco Pluripotentes/metabolismo , Receptores de Fator de Crescimento Neural/genética , Pesquisa com Células-Tronco , Apoptose/genética , Diferenciação Celular/genética , Movimento Celular/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais
10.
Breast Cancer Res Treat ; 146(3): 525-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25007966

RESUMO

In general, tumor cells display a more glycolytic phenotype compared to the corresponding normal tissue. However, it is becoming increasingly clear that tumors are composed of a heterogeneous population of cells. Breast cancers are organized in a hierarchical manner, with the breast cancer stem cells (BCSCs) at the top of the hierarchy. Here, we investigate the metabolic phenotype of BCSCs and their differentiated progeny. In addition, we determine the effect of radiation on the metabolic state of these two cell populations. Luminal, basal, and claudin-low breast cancer cell lines were propagated as mammospheres enriched in BCSCs. Lactate production, glucose consumption, and ATP content were compared with differentiated cultures. A metabolic flux analyzer was used to determine the oxygen consumption, extracellular acidification rates, maximal mitochondria capacity, and mitochondrial proton leak. The effect of radiation treatment of the metabolic phenotype of each cell population was also determined. BCSCs consume more glucose, produce less lactate, and have higher ATP content compared to their differentiated progeny. BCSCs have higher maximum mitochondrial capacity and mitochondrial proton leak compared to their differentiated progeny. Radiation treatment enhances the higher energetic state of the BCSCs, while decreasing mitochondrial proton leak. Our study indicated that breast cancer cells are heterogeneous in their metabolic phenotypes and BCSCs reside in a distinct metabolic state compared to their differentiated progeny. BCSCs display a reliance on oxidative phosphorylation, while the more differentiated progeny displays a more glycolytic phenotype. Radiation treatment affects the metabolic state of BCSCs. We conclude that interfering with the metabolic requirements of BCSCs may prevent radiation-induced reprogramming of breast cancer cells during radiation therapy, thus improving treatment outcome.


Assuntos
Neoplasias da Mama/metabolismo , Diferenciação Celular/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos da radiação , Feminino , Glicólise/genética , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos da radiação , Consumo de Oxigênio/efeitos da radiação , Raios X
11.
BMC Cancer ; 14: 152, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24593279

RESUMO

BACKGROUND: Experimental and clinical data suggest that solid cancers contain treatment-resistant cancer stem cells that will impair treatment efficacy. The objective of this study was to investigate if head and neck squamous cell carcinoma (HNSCC) also contain cancer stem cells that can be identified by low 26S proteasome activity and if their presence correlates to clinical outcome. METHODS: Human HNSCC cells, engineered to report lack of proteasome activity based on accumulation of a fluorescent fusion protein, were separated based on high (ZsGreen-cODCneg) or low (ZsGreen-cODCpos) proteasome activity. Self-renewal capacity, tumorigenicity and radioresistance were assessed. Proteasome subunit expression was analyzed in tissue microarrays and correlated to survival and locoregional cancer control of 174 patients with HNSCC. RESULTS: HNSCC cells with low proteasome activity showed a significantly higher self-renewal capacity and increased tumorigenicity. Irradiation enriched for ZsGreen-cODCpos cells. The survival probability of 82 patients treated with definitive radio- or chemo-radiotherapy exhibiting weak, intermediate, or strong proteasome subunit expression were 21.2, 28.8 and 43.8 months (p = 0.05), respectively. Locoregional cancer control was comparably affected. CONCLUSIONS: Subpopulations of HNSCC display stem cell features that affect patients' tumor control and survival. Evaluating cancer tissue for expression of the proteasome subunit PSMD1 may help identify patients at risk for relapse.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/mortalidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Adulto , Idoso , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Fatores de Risco
12.
Proc Natl Acad Sci U S A ; 108(38): 16062-7, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21900605

RESUMO

Gliomas contain a small number of treatment-resistant glioma stem cells (GSCs), and it is thought that tumor regrowth originates from GSCs, thus rendering GSCs an attractive target for novel treatment approaches. Cancer cells rely more on glycolysis than on oxidative phosphorylation for glucose metabolism, a phenomenon used in 2-[(18)F]fluoro-2-deoxy-D-glucose positron emission tomography imaging of solid cancers, and targeting metabolic pathways in cancer cells has become a topic of considerable interest. However, if GSCs are indeed important for tumor control, knowledge of the metabolic state of GSCs is needed. We hypothesized that the metabolism of GSCs differs from that of their progeny. Using a unique imaging system for GSCs, we assessed the oxygen consumption rate, extracellular acidification rate, intracellular ATP levels, glucose uptake, lactate production, PKM1 and PKM2 expression, radiation sensitivity, and cell cycle duration of GSCs and their progeny in a panel of glioma cell lines. We found GSCs and progenitor cells to be less glycolytic than differentiated glioma cells. GSCs consumed less glucose and produced less lactate while maintaining higher ATP levels than their differentiated progeny. Compared with differentiated cells, GSCs were radioresistant, and this correlated with a higher mitochondrial reserve capacity. Glioma cells expressed both isoforms of pyruvate kinase, and inhibition of either glycolysis or oxidative phosphorylation had minimal effect on energy production in GSCs and progenitor cells. We conclude that GSCs rely mainly on oxidative phosphorylation. However, if challenged, they can use additional metabolic pathways. Therefore, targeting glycolysis in glioma may spare GSCs.


Assuntos
Metabolismo Energético , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco/metabolismo , Trifosfato de Adenosina/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Clonais/metabolismo , Desoxiglucose/farmacologia , Glioma/patologia , Glucose/metabolismo , Glucose/farmacocinética , Glicólise/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Lactatos/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Oligomicinas/farmacologia , Consumo de Oxigênio , Tomografia por Emissão de Pósitrons/métodos , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/efeitos dos fármacos , Análise Serial de Tecidos , Desacopladores/farmacologia
13.
Breast Cancer Res Treat ; 141(2): 197-203, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24013708

RESUMO

Breast cancers are thought to be organized hierarchically with a small number of breast cancer stem cells (BCSCs), able to regrow a tumor after sublethal treatment while their progeny lack this feature. Furthermore, BCSCs are highly resistant to conventional anticancer treatments. According to the cancer stem cell hypothesis, all cancer stem cells in a tumor have to be eliminated to achieve cancer cure. In this study we tested if targeted elimination of BCSCs leads to tumor regression. Specific targeting of BCSCs was achieved via a unique imaging and targeting system that relies on their low proteasome activity. In our system breast cancer cells stably express a fluorescent fusion protein, thymidine kinase-ZsGreen-cODC, which is readily degraded after translation in cells with normal 26S proteasome activity. However, cells with low proteasome activity accumulate this fluorescent fusion protein, thus allowing for their identification, tracking, and specific elimination. Here, we show that the activity of the 26S proteasome was significantly down-regulated in MCF-7, T47D, and MDA-MB-231 cultures enriched for BCSCs. Treatment with ganciclovir resulted in abrogation of sphere formation in vitro, and tumor regression in vivo, thus demonstrating that targeted elimination of BCSCs leads to loss of self-renewal in vitro and tumor regression in vivo. We conclude that specific targeting of BCSCs could be a useful strategy to improve treatment outcome.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Ativação Enzimática , Feminino , Xenoenxertos , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares , Carga Tumoral , Células Tumorais Cultivadas
14.
Stem Cells ; 30(5): 833-44, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22489015

RESUMO

Breast cancers are thought to be organized hierarchically with a small number of breast cancer stem cells (BCSCs) able to regrow a tumor while their progeny lack this ability. Recently, several groups reported enrichment for BCSCs when breast cancers were subjected to classic anticancer treatment. However, the underlying mechanisms leading to this enrichment are incompletely understood. Using non-BCSCs sorted from patient samples, we found that ionizing radiation reprogrammed differentiated breast cancer cells into induced BCSCs (iBCSCs). iBCSCs showed increased mammosphere formation, increased tumorigenicity, and expressed the same stemness-related genes as BCSCs from nonirradiated samples. Reprogramming occurred in a polyploid subpopulation of cells, coincided with re-expression of the transcription factors Oct4, sex determining region Y-box 2, Nanog, and Klf4, and could be partially prevented by Notch inhibition. We conclude that radiation may induce a BCSC phenotype in differentiated breast cancer cells and that this mechanism contributes to increased BCSC numbers seen after classic anticancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Desdiferenciação Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/biossíntese , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Células-Tronco Neoplásicas/patologia , Poliploidia , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Raios X
15.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046604

RESUMO

Larotrectinib and Entrectinib are specific pan-Trk tyrosine kinase inhibitors (TKIs) approved by the Food and Drug Administration (FDA) in 2018 for cancers with an NTRK fusion. Despite initial enthusiasm for these compounds, the French agency (HAS) recently reported their lack of efficacy. In addition, primary and secondary resistance to these TKIs has been observed in the absence of other mutations in cancers with an NTRK fusion. Furthermore, when TrkA is overexpressed, it promotes ligand-independent activation, bypassing the TKI. All of these clinical and experimental observations show that genetics does not explain all therapeutic failures. It is therefore necessary to explore new hypotheses to explain these failures. This review summarizes the current status of therapeutic strategies with TrkA inhibitors, focusing on the mechanisms potentially involved in these failures and more specifically on the role of TrkA.

16.
ACS Sens ; 8(8): 2921-2926, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431846

RESUMO

Despite several demonstrations of electrochemical devices with limits of detection (LOD) of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to the challenges of scaling up. In this study, we show that the recently introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array, based on Brownian-fluctuating redox species, opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/química , Limite de Detecção
17.
Exp Hematol Oncol ; 12(1): 104, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072918

RESUMO

BACKGROUND: Triple-Negative Breast Cancer is particularly aggressive, and its metastasis to the brain has a significant psychological impact on patients' quality of life, in addition to reducing survival. The development of brain metastases is particularly harmful in triple-negative breast cancer (TNBC). To date, the mechanisms that induce brain metastasis in TNBC are poorly understood. METHODS: Using a human blood-brain barrier (BBB) in vitro model, an in vitro 3D organotypic extracellular matrix, an ex vivo mouse brain slices co-culture and in an in vivo xenograft experiment, key step of brain metastasis were recapitulated to study TNBC behaviors. RESULTS: In this study, we demonstrated for the first time the involvement of the precursor of Nerve Growth Factor (proNGF) in the development of brain metastasis. More importantly, our results showed that proNGF acts through TrkA independent of its phosphorylation to induce brain metastasis in TNBC. In addition, we found that proNGF induces BBB transmigration through the TrkA/EphA2 signaling complex. More importantly, our results showed that combinatorial inhibition of TrkA and EphA2 decreased TBNC brain metastasis in a preclinical model. CONCLUSIONS: These disruptive findings provide new insights into the mechanisms underlying brain metastasis with proNGF as a driver of brain metastasis of TNBC and identify TrkA/EphA2 complex as a potential therapeutic target.

18.
Prostate ; 72(8): 868-74, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21932424

RESUMO

BACKGROUND: Prostate cancer is frequently treated with radiotherapy. While treatment results are in general excellent, some patients relapse and current systemic therapies are not curative, thus, underlining the need for novel targeted therapies. Proteasome inhibitors have been suggested as promising new agents against solid tumors including prostate cancer but initial results from clinical trials are disappointing. METHODS: In this study we tested if prostate cancer cells are heterogeneous with regard to their intrinsic 26S proteasome activity, which could explain the lack of clinical responses to bortezomib. PC-3 and DU145 prostate cancer cells and an imaging system for proteasome activity were used to identify individual cells with low proteasome activity. Clonogenic survival assays, a sphere-forming assay and an in vivo limiting dilution assay were used to characterize radiation sensitivity, self-renewal capacity, and tumorigenicity of the different subsets of cells. RESULTS: We identified a small population of cells with intrinsically low 26S proteasome activity. Fractionated radiation enriched for these cells and clonogenic survival assays and sphere-forming assays revealed a radioresistant phenotype and increased self-renewal capacity. CONCLUSIONS: We conclude that low 26S proteasome activity identifies a radioresistant prostate cancer cell population. This population of cells could be responsible for the clinical resistance of advanced prostate cancer to proteasome inhibitors and radiation.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/radioterapia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Tolerância a Radiação , Radioterapia , Adenocarcinoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Camundongos , Camundongos Nus , Fenótipo , Neoplasias da Próstata/tratamento farmacológico , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Falha de Tratamento
19.
Cancers (Basel) ; 14(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35267607

RESUMO

GD3 synthase controls the biosynthesis of complex gangliosides, bearing two or more sialic acid residues. Disialylated gangliosides GD3 and GD2 are tumor-associated carbohydrate antigens (TACA) in neuro-ectoderm-derived cancers, and are directly involved in cell malignant properties, i.e., migration, invasion, stemness, and epithelial-mesenchymal transition. Since GD3 and GD2 levels are directly linked to GD3 synthase expression and activity, targeting GD3 synthase appears to be a promising strategy through which to interfere with ganglioside-associated malignant properties. We review here the current knowledge on GD3 synthase expression and regulation in cancers, and the consequences of complex ganglioside expression on cancer cell signaling and properties, highlighting the relationships between GD3 synthase expression and epithelial-mesenchymal transition and stemness. Different strategies were used to modulate GD3 synthase expression in cancer cells in vitro and in animal models, such as inhibitors or siRNA/lncRNA, which efficiently reduced cancer cell malignant properties and the proportion of GD2 positive cancer stem cells, which are associated with high metastatic properties, resistance to therapy, and cancer relapse. These data show the relevance of targeting GD3 synthase in association with conventional therapies, to decrease the number of cancer stem cells in tumors.

20.
J Exp Clin Cancer Res ; 41(1): 110, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346305

RESUMO

BACKGROUND: CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. METHODS: After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. RESULTS: We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. CONCLUSION: Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers.


Assuntos
Neoplasias da Mama , Receptores de Hialuronatos , Fator de Crescimento Neural , Receptor trkA , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Fator de Crescimento Neural/farmacologia , Isoformas de Proteínas , Receptor trkA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA