Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Mol Cell Cardiol ; 160: 97-110, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216608

RESUMO

Angiotensin II (Ang II) presents a critical mediator in various pathological conditions such as non-genetic cardiomyopathy. Osmotic pump infusion in rodents is a commonly used approach to model cardiomyopathy associated with Ang II. However, profound differences in electrophysiology and pharmacokinetics between rodent and human cardiomyocytes may limit predictability of animal-based experiments. This study investigates the application of an Organ-on-a-chip (OOC) system in modeling Ang II-induced progressive cardiomyopathy. The disease model is constructed to recapitulate myocardial response to Ang II in a temporal manner. The long-term tissue cultivation and non-invasive functional readouts enable monitoring of both acute and chronic cardiac responses to Ang II stimulation. Along with mapping of cytokine secretion and proteomic profiles, this model presents an opportunity to quantitatively measure the dynamic pathological changes that could not be otherwise identified in animals. Further, we present this model as a testbed to evaluate compounds that target Ang II-induced cardiac remodeling. Through assessing the effects of losartan, relaxin, and saracatinib, the drug screening data implicated multifaceted cardioprotective effects of relaxin in restoring contractile function and reducing fibrotic remodeling. Overall, this study provides a controllable platform where cardiac activities can be explicitly observed and tested over the pathological process. The facile and high-content screening can facilitate the evaluation of potential drug candidates in the pre-clinical stage.


Assuntos
Angiotensina II/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Animais , Cardiomiopatias/patologia , Cardiotônicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/métodos , Fibroblastos/metabolismo , Fibrose , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-Chip , Losartan/farmacologia , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Projetos Piloto , Proteoma , Proteômica/métodos , Proteínas Recombinantes/farmacologia , Relaxina/farmacologia , Remodelação Ventricular/efeitos dos fármacos
2.
Adv Biol (Weinh) ; 6(11): e2101165, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798316

RESUMO

Despite current efforts in organ-on-chip engineering to construct miniature cardiac models, they often lack some physiological aspects of the heart, including fiber orientation. This motivates the development of bioartificial left ventricle models that mimic the myofiber orientation of the native ventricle. Herein, an approach relying on microfabricated elastomers that enables hierarchical assembly of 2D aligned cell sheets into a functional conical cardiac ventricle is described. Soft lithography and injection molding techniques are used to fabricate micro-grooves on an elastomeric polymer scaffold with three different orientations ranging from -60° to +60°, each on a separate trapezoidal construct. The width of the micro-grooves is optimized to direct the majority of cells along the groove direction and while periodic breaks are used to promote cell-cell contact. The scaffold is wrapped around a central mandrel to obtain a conical-shaped left ventricle model inspired by the size of a human left ventricle 19 weeks post-gestation. Rectangular micro-scale holes are incorporated to alleviate oxygen diffusional limitations within the 3D scaffold. Cardiomyocytes within the 3D left ventricle constructs showed high viability in all layers after 7 days of cultivation. The hierarchically assembled left ventricle also provided functional readouts such as calcium transients and ejection fraction.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Engenharia Tecidual/métodos , Ventrículos do Coração , Elastômeros , Miócitos Cardíacos
3.
Lab Chip ; 22(6): 1171-1186, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35142777

RESUMO

Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense. Here, we developed an approach to study SARS-CoV-2 infection using vasculature-on-a-chip. We first modeled the interaction of virus alone with the endothelialized vasculature-on-a-chip, followed by the studies of the interaction of the virus exposed-endothelial cells with peripheral blood mononuclear cells (PBMCs). In an endothelial model grown on a permeable microfluidic bioscaffold under flow conditions, both human coronavirus (HCoV)-NL63 and SARS-CoV-2 presence diminished endothelial barrier function by disrupting VE-cadherin junctions and elevating the level of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, and angiopoietin-2. Inflammatory cytokine markers were markedly more elevated upon SARS-CoV-2 infection compared to HCoV-NL63 infection. Introduction of PBMCs with monocytes into the vasculature-on-a-chip upon SARS-CoV-2 infection further exacerbated cytokine-induced endothelial dysfunction, demonstrating the compounding effects of inter-cellular crosstalk between endothelial cells and monocytes in facilitating the hyperinflammatory state. Considering the harmful effects of SARS-CoV-2 on endothelial cells, even without active virus proliferation inside the cells, a potential therapeutic approach is critical. We identified angiopoietin-1 derived peptide, QHREDGS, as a potential therapeutic capable of profoundly attenuating the inflammatory state of the cells consistent with the levels in non-infected controls, thereby improving the barrier function and endothelial cell survival against SARS-CoV-2 infection in the presence of PBMC.


Assuntos
Angiopoietina-1 , Tratamento Farmacológico da COVID-19 , COVID-19 , Endotélio Vascular , Inflamação , SARS-CoV-2 , COVID-19/virologia , Células Endoteliais/imunologia , Células Endoteliais/virologia , Endotélio Vascular/imunologia , Endotélio Vascular/virologia , Humanos , Imunidade Inata , Inflamação/tratamento farmacológico , Inflamação/virologia , Dispositivos Lab-On-A-Chip , Leucócitos Mononucleares
4.
Nat Protoc ; 16(4): 2158-2189, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790475

RESUMO

Owing to their high spatiotemporal precision and adaptability to different host cells, organ-on-a-chip systems are showing great promise in drug discovery, developmental biology studies and disease modeling. However, many current micro-engineered biomimetic systems are limited in technological application because of culture media mixing that does not allow direct incorporation of techniques from stem cell biology, such as organoids. Here, we describe a detailed alternative method to cultivate millimeter-scale functional vascularized tissues on a biofabricated platform, termed 'integrated vasculature for assessing dynamic events', that enables facile incorporation of organoid technology. Utilizing the 3D stamping technique with a synthetic polymeric elastomer, a scaffold termed 'AngioTube' is generated with a central microchannel that has the mechanical stability to support a perfusable vascular system and the self-assembly of various parenchymal tissues. We demonstrate an increase in user familiarity and content analysis by situating the scaffold on a footprint of a 96-well plate. Uniquely, the platform can be used for facile connection of two or more tissue compartments in series through a common vasculature. Built-in micropores enable the studies of cell invasion involved in both angiogenesis and metastasis. We describe how this protocol can be applied to create both vascularized cardiac and hepatic tissues, metastatic breast cancer tissue and personalized pancreatic cancer tissue through incorporation of patient-derived organoids. Platform assembly to populating the scaffold with cells of interest into perfusable functional vascularized tissue will require 12-14 d and an additional 4 d if pre-polymer and master molds are needed.


Assuntos
Vasos Sanguíneos/fisiologia , Dispositivos Lab-On-A-Chip , Organoides/fisiologia , Perfusão , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Alicerces Teciduais/química
5.
ACS Cent Sci ; 5(7): 1146-1158, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31403068

RESUMO

Myocardial fibrosis is a severe global health problem due to its prevalence in all forms of cardiac diseases and direct role in causing heart failure. The discovery of efficient antifibrotic compounds has been hampered due to the lack of a physiologically relevant disease model. Herein, we present a disease model of human myocardial fibrosis and use it to establish a compound screening system. In the Biowire II platform, cardiac tissues are suspended between a pair of poly(octamethylene maleate (anhydride) citrate) (POMaC) wires. Noninvasive functional readouts are realized on the basis of the deflection of the intrinsically fluorescent polymer. The disease model is constructed to recapitulate contractile, biomechanical, and electrophysiological complexities of fibrotic myocardium. Additionally, we constructed a heteropolar integrated model with fibrotic and healthy cardiac tissues coupled together. The integrated model captures the regional heterogeneity of scar lesion, border zone, and adjacent healthy myocardium. Finally, we demonstrate the utility of the system for the evaluation of antifibrotic compounds. The high-fidelity in vitro model system combined with convenient functional readouts could potentially facilitate the development of precision medicine strategies for cardiac fibrosis modeling and establish a pipeline for preclinical compound screening.

6.
Nat Protoc ; 13(8): 1793-1813, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30072724

RESUMO

Microengineered biomimetic systems for organ-on-a-chip or tissue engineering purposes often fail as a result of an inability to recapitulate the in vivo environment, specifically the presence of a well-defined vascular system. To address this limitation, we developed an alternative method to cultivate three-dimensional (3D) tissues by incorporating a microfabricated scaffold, termed AngioChip, with a built-in perfusable vascular network. Here, we provide a detailed protocol for fabricating the AngioChip scaffold, populating it with endothelial cells and parenchymal tissues, and applying it in organ-on-a-chip drug testing in vitro and surgical vascular anastomosis in vivo. The fabrication of the AngioChip scaffold is achieved by a 3D stamping technique, in which an intricate microchannel network can be embedded within a 3D scaffold. To develop a vascularized tissue, endothelial cells are cultured in the lumen of the AngioChip network, and parenchymal cells are encapsulated in hydrogels that are amenable to remodeling around the vascular network to form functional tissues. Together, these steps yield a functional, vascularized network in vitro over a 14-d period. Finally, we demonstrate the functionality of AngioChip-vascularized hepatic and cardiac tissues, and describe direct surgical anastomosis of the AngioChip vascular network on the hind limb of a Lewis rat model.


Assuntos
Materiais Biomiméticos , Células Endoteliais/fisiologia , Microfluídica/métodos , Microtecnologia/métodos , Técnicas de Cultura de Órgãos/métodos , Polímeros , Alicerces Teciduais , Animais , Células Cultivadas , Hepatócitos/fisiologia , Humanos , Microfluídica/instrumentação , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Órgãos/instrumentação , Ratos
7.
Stem Cell Rev Rep ; 13(3): 335-346, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429185

RESUMO

Drug discovery and development continues to be a challenge to the pharmaceutical industry despite great advances in cell and molecular biology that allow for the design of better targeted therapeutics. Many potential drug compounds fail during the clinical trial due to inefficacy and toxicity that were not predicted during preclinical stages. The fundamental problem lies with the use of traditional drug screening models that still largely rely on the use of cell lines or animal cell monolayers, which leads to lack of predictive power of human tissue and organ response to the drug candidates. More physiologically relevant systems are therefore critical in relieving the burden of high failure rates. Emerging knowledge and techniques in tissue engineering and microfabrication have enabled the development of micro-engineered systems - collectively known as organs-on-chips - that may lead to a paradigm shift in preclinical drug screening assays. In this review we explore the technological advances and challenges in the development of heart-on-a-chip models, by addressing current assessment methods for drug-induced cardiotoxicity and providing a perspective on the modifications that should be implemented to realize the full potential of this system.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip , Modelos Cardiovasculares , Miocárdio/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA